Human-centred design and fabrication of a wearable multimodal visual assistance system

Roska, B. & Sahel, Ja Restore vision. nature 557359-367 (2018).
Maidenbau, S., ABBOUD, S. & Ameedi, A. Sensory Replacement: Bed the gap between basic research and wide practical visual rehabilitation. Neurosci. biobehav. pastor 413-15 (2014).
Tapu, R., MoCanu, B. & Zhaaria, T. Wearable auxiliary devices to weaken visually: A State of the Art Survey. Learn the style. Lett. 13737-52 (2020).
Herskovitz, J. et al. Piracy, switching and plural: Understanding and supporting the DIY auxiliary technology design by the blind. in Brook. 2023 Chi Conference on Human Factors in Computing Systems (Eds Albrecht, S. Et al.) 1-17 (ACM, 2023).
a witness. in Brook. 2024 conference on robot learning (Eds Marc, T. Et Al.) 492-504 (PMLR, 2024).
Wu, W. and others. Navigation in the language of vision: a survey and classification study. Nervous computing. Appl. 363291-3316 (2024).
Spoendlin, H. & Schrott, A. Human auditory nerve analysis. He hears. Accuracy. 4325-38 (1989).
Bach – Y – Rita, P. Sipping sensory replacement studies. that. NY acad. Sci. 101383-91 (2004).
Ngwin, the et al. Auxiliary device that can be worn for the blind using the Electrotactile screen that is placed in the tongue: design and verification. in Brook. 2013 International Conference on Control, Automation and Information Sciences (Eds Jin, B. Et Al.) 42-47 (IEEE, 2013).
Huang, Y. Et al. The integrated multimedia interface for the skin for overwhelming touch comments. Nat. Electron. 61020-1031 (2023).
Guo, h. et al. PV sensitive hearing sensor, works himself for social robots and hearing tools. Sci. Robot. 3EAAT2516 (2018).
LIU, y. et al. A soft, miniature, wireless olfactory interface for virtual reality. Nat. communication. 142297 (2023).
Hoffman, R. And others. Evaluating the vocal sensory replacement device to enhance spatial awareness of visual impairment. Optom. Facebook. Sci. 95757-765 (2018).
LI, G., Xu, J., LI, Z., Chen, C. & Kan, Z. Sensing and Mavigation of Assable Assistance Systems for the Pisyly Paired. IEEE Trans. Be. Dave. split. 15122-133 (2022).
Xu, C. Et al. An electronic device for physical and chemical skin to monitor the stress response. Nat. Electron. 7168-179 (2024).
Yang, S. And others. Learn about mixed speech and interaction with artificial throat can be worn. Nat. Mach. Minds. 5169-180 (2023).
Gu, L. et al. Ain vital simulation with a pyrovskite nanoscopic retina. nature 581278-282 (2020).
Yao, K. et al. Coding touch information on hand through the complex HAPTIC wireless interface for the skin. Nat. Mach. Minds. 4893-903 (2022).
Jocher, C. Et al. Ultrallytics yolov8. Jaytab https://github.com/ltrallytics/ltralytics (2023).
Krausz, NE, Lenzi, T IEEE Trans. Biomed. Engineer. 622576-2587 (2015).
González, J in Brook. 2009 IEEE International Conference on Rehabilitation Robots (Eds Kiyoshi, N. Et al.) 240-245 (IEEE, 2009).
George, Ja and others. Vital simulation sensory reactions by stimulating the peripheral nerve improves reddish -lioni. Sci. Robot. 4EAAX2352 (2019).
Meijer, PB experimental system to represent auditory images. IEEE Trans. Biomed. Engineer. 39112-121 (1992).
Levy-tzedek, S., Hanassy, S., ABBOUD, S., Maidenbauum, S. & Amidi, A. Fast, Dicate Accounting Movents with the optical senses replacement device. restoration. Neurol. Neurosci. 30313-323 (2012).
The scientific researcher from Google
Yang, J. And others. Electronic skins breathe to monitor daily physiological signals. Nano Micro Lit. 14161 (2022).
Chortos, A., LIU, J Nat. the mom. 15937-950 (2016).
Y, J. And others. The fully printed human facade of physical and chemical sensing. Sci. Robot. 7Eabn0495 (2022).
U, x. and others. Integrated HAPTIC Facades of the Skin Virtual Reality. nature 575473-479 (2019).
Sane, Jn & Donoghue, JP Lod and Cortex Primary Engine. Annu. Neurosci priest. 23393-415 (2000).
SUSAL, J., Krauss, K., Tsingos, N. & Altman, M. MEMERSIVE AUDIO For VR. in Brook. 2016 AES International Conference on Voice for Virtual and Augmented Reality (Eds Andres, M. Et Al) 99-124 (Voice Engineering Association, 2016).
Zhao, y. et al. Empowering independent movement of people with vision impairment through the vision -based feeding system. in Brook. 2018 Chi Conference on Human Factors in Computing Systems (Eds Regan, M. Et Al.) 1-14 (ACM, 2018).
Slade, P., Tambe, A. & KoCHENDERFER, MJ MULTIMODAL SENSING and PITUCTIONASISISTANCE improving mobility and mobility for people with poor vision. Sci. Robot. 6Eabg6594 (2021).
Jordan, PW, Thomas, B., MCCLELLAND, IL & Weerdmeester, B. Evaluation of the ability to use in the industry (CRC, 1996).
Soro, c. Manual for system use scale: background, standards and best practices (LLC, 2011).
Country, MW Retinal Retinal: A comparison of energy in the retina. The accuracy of the brain. 167250-57 (2017).
Liao, f. et al. Visual adaptation to the biological sensor for an accurate perception. Nat. Electron. 584-91 (2022).
Park, J. et al. Peruviskite -inspired artificial vision system for sticking and multi -spectrum photography. Sci. Robot. 9Eadk6903 (2024).
Zhang, Z. et al. Everyone in one of the two -dimensional retinal retinal retinal devices to detect and identify movement. Nat. Nanotechnology. 1727-32 (2022).
Gian, T. And others. The design centered around the human and the manufacture of a multimedia visual aid system can be worn. Figshare https://doi.org/10.6084/m9.figshare.26103583 (2025).
Gian, T. And others. The design centered around the human and the manufacture of a multimedia visual aid system can be worn. Zenudo https://doi.org/10.5281/zenodo.14752720 (2025).
Don’t miss more hot News like this! AI/" target="_blank" rel="noopener">Click here to discover the latest in AI news!
2025-04-14 00:00:00