Personalized uncertainty quantification in artificial intelligence

Allen, B. The promise of explainable AI in digital health for precision medicine: a systematic review. J. Personalized Med. 14, 277 (2024).
Google Scholar
Battaglini, M. & Rasmussen, S. Transparency, automated decision-making processes and personal profiling. J. Data Prot. Priv. 2, 331–349 (2019).
Christensen, J. in Demystifying AI for the Enterprise 149–192 (Productivity, 2021).
Hüllermeier, E. & Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110, 457–506 (2021).
Google Scholar
Der Kiureghian, A. & Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Saf. 31, 105–112 (2009).
Google Scholar
Volodina, V. & Challenor, P. The importance of uncertainty quantification in model reproducibility. Philos. Trans. R. Soc. A 379 (2021).
Walther, B. A. & Moore, J. L. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 815–829 (2005).
Google Scholar
Krishnan, R. & Tickoo, O. Improving model calibration with accuracy versus uncertainty optimization. Adv. Neural Inf. Process. Syst. 33, 18237–18248 (2020).
Rogers, W. A. & Walker, M. J. Fragility, uncertainty, and healthcare. Theor. Med. Bioeth. 37, 71–83 (2016).
Google Scholar
Podkopaev, A. & Ramdas, A. Distribution-free uncertainty quantification for classification under label shift. Proc. Mach. Learn. Res. 161, 844–853 (2021).
Thuy, A. & Benoit, D. F. Explainability through uncertainty: trustworthy decision-making with neural networks. Eur. J. Oper. Res. 317, 330–340 (2024).
Google Scholar
Kumar, S. & Srivastava, A. Bootstrap prediction intervals in non-parametric regression with applications to anomaly detection. In Proc. 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2012).
Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Proc. Mach. Learn. Res. 48, 1050–1059 (2016).
Milanés-Hermosilla, D. et al. Monte Carlo dropout for uncertainty estimation and motor imagery classification. Sensors 21, 7241 (2021).
Google Scholar
Kotelevskii, N., Horváth, S., Nandakumar, K., Takáč, M. & Panov, M. Dirichlet-based uncertainty quantification for personalized federated learning with improved posterior networks. In Proc. Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24) 7127–7135 (2023).
Wang, X. & Kadıoğlu, S. Modeling uncertainty to improve personalized recommendations via bayesian deep learning. Int. J. Data Sci. Anal. 16, 191–201 (2023).
Google Scholar
Vovk, V., Gammerman, A. & Shafer, G. Algorithmic Learning in a Random World Vol. 29 (Springer, 2005).
Angelopoulos, A. N. & Bates, S. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. Foundations and Trends in Machine Learning 16, 494–591 (2023).
Google Scholar
Papadopoulos, H., Proedrou, K., Vovk, V. & Gammerman, A. Inductive confidence machines for regression. In Machine Learning: ECML 2002 (eds Elomaa, T. et al.) 345–356 (Lecture Notes in Computer Science Vol. 2430, Springer, 2002).
Barber, R. F., Candes, E. J., Ramdas, A. & Tibshirani, R. J. Conformal prediction beyond exchangeability. Ann. Stat. 51, 816–845 (2023).
Google Scholar
Gibbs, I. & Candes, E. Adaptive conformal inference under distribution shift. Adv. Neural Inf. Process. Syst. 34, 1660–1672 (2021).
Gibbs, I. & Candes, E. Conformal inference for online prediction with arbitrary distribution shifts. J. Mach. Learn. Res. 25.162, 1–36 (2024).
Google Scholar
Angelopoulos, A. N., Barber, R. F. & Bates, S. Online conformal prediction with decaying step sizes. Proc. Mach. Learn. Res. 235, 1616–1630 (2024).
Zaffran, M., Féron, O., Goude, Y., Josse, J. & Dieuleveut, A. Adaptive conformal predictions for time series. Proc. Mach. Learn. Res. 162, 25834–25866 (2022).
Lei, J. & Wasserman, L. Distribution-free prediction bands for non-parametric regression. J. R. Stat. Soc. B 76, 71–96 (2014).
Google Scholar
Löfström, T., Boström, H., Linusson, H. & Johansson, U. Bias reduction through conditional conformal prediction. Intell. Data Anal. 19, 1355–1375 (2015).
Google Scholar
Foygel Barber, R., Candes, E. J., Ramdas, A. & Tibshirani, R. J. The limits of distribution-free conditional predictive inference. Inf. Inference 10, 455–482 (2021).
Google Scholar
Romano, Y., Patterson, E. & Candes, E. Conformalized quantile regression. Adv. Neural Inf. Process. Syst. 32 (2019).
Romano, Y., Sesia, M. & Candes, E. Classification with valid and adaptive coverage. Adv. Neural Inf. Process. Syst. 33, 3581–3591 (2020).
Guan, L. Localized conformal prediction: a generalized inference framework for conformal prediction. Biometrika 110, 33–50 (2023).
Google Scholar
Ding, T., Angelopoulos, A., Bates, S., Jordan, M. & Tibshirani, R. J. Class-conditional conformal prediction with many classes. Adv. Neural Inf. Process. Syst. 36 (2024).
Romano, Y., Barber, R. F., Sabatti, C. & Candès, E. With malice toward none: assessing uncertainty via equalized coverage. Harv. Data Sci. Rev. 2, 4 (2020).
Sadinle, M., Lei, J. & Wasserman, L. Least ambiguous set-valued classifiers with bounded error levels. J. Am. Stat. Assoc. 114, 223–234 (2019).
Google Scholar
Gibbs, I., Cherian, J. J. & Candès, E. J. Conformal prediction with conditional guarantees. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2025.
Ye, D. et al. Uncertainty quantification patterns for multiscale models. Philos. Trans. R. Soc. A 379, 20200072 (2021).
Google Scholar
Akbari, A. & Jafari, R. Personalizing activity recognition models through quantifying different types of uncertainty using wearable sensors. IEEE Trans. Biomed. Eng. 67, 2530–2541 (2020).
Google Scholar
Fontana, M., Zeni, G. & Vantini, S. Conformal prediction: a unified review of theory and new challenges. Preprint at https://arxiv.org/abs/2005.07972 (2021).
Abdar, M. et al. A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021).
Google Scholar
Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).
Google Scholar
Ji, Q. et al. Multimodal omics approaches to aging and age-related diseases. Phenomics 4, 56–71 (2024).
Google Scholar
Canali, S., Schiaffonati, V. & Aliverti, A. Challenges and recommendations for wearable devices in digital health: data quality, interoperability, health equity, fairness. PLoS Digit. Health 1, e0000104 (2022).
Google Scholar
Futoma, J. et al. As good as it gets? A new approach to estimating possible prediction performance. PLoS ONE 19, e0296904 (2024).
Google Scholar
Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J. & Shah, S. P. Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22, 114–126 (2022).
Google Scholar
Baltrušaitis, T., Ahuja, C. & Morency, L.-P. Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 423–443 (2018).
Google Scholar
Rahate, A., Walambe, R., Ramanna, S. & Kotecha, K. Multimodal co-learning: challenges, applications with datasets, recent advances and future directions. Inf. Fusion 81, 203–239 (2022).
Google Scholar
Longo, L. et al. Explainable Artificial Intelligence (XAI) 2.0: a manifesto of open challenges and interdisciplinary research directions. Inf. Fusion 106, 102301 (2024).
Google Scholar
Ayci, G., Sensoy, M., Özgür, A. & Yolum, P. Uncertainty-aware personal assistant for making personalized privacy decisions. ACM Trans. Internet Technol. 23, 13 (2023).
Google Scholar
Tjoa, E. & Guan, C. A survey on Explainable Artificial Intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32, 4793–4813 (2020).
Google Scholar
Qian, W. et al. Towards modeling uncertainties of self-explaining neural networks via conformal prediction. In Proc. AAAI Conference on Artificial Intelligence Vol. 38 14651–14659 (2024).
Almaslukh, B. A reliable breast cancer diagnosis approach using an optimized deep learning and conformal prediction. Biomed. Signal Process. Control 98, 106743 (2024).
Google Scholar
Quinonero-Candela, J. et al. Dataset Shift in Machine Learning (MIT Press, 2009).
Mougan, C. & Nielsen, D. Monitoring model deterioration with explainable uncertainty estimation via non-parametric bootstrap. In Proc. AAAI Conference on Artificial Intelligence Vol. 37:12 15037–15045 (2023).
Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M. & Bouchachia, A. A survey on concept drift adaptation. ACM Comput. Surv. 46, 44 (2014).
Google Scholar
Sebastiao, R. & Gama, J. On evaluating stream learning algorithms. Mach. Learn. 90, 317–346 (2013).
Google Scholar
Sebastiao, R. & Gama, J. A study on change detection methods. In Progress in Artificial Intelligence, 14th Portuguese Conference on Artificial Intelligence, EPIA 12–15 (2009).
Bayram, F., Ahmed, B. & Kassler, A. From concept drift to model degradation: an overview on performance-aware drift detectors. Knowl.-Based Syst. 245, 108632 (2022).
Google Scholar
Garg, S., Balakrishnan, S., Lipton, Z., Neyshabur, B. & Sedghi, H. Leveraging unlabeled data to predict out-of-distribution performance. In NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications (2021).
Barber, R., Candes, E., Ramdas, A. & Tibshirani, R. Predictive inference with the jackknife+. Ann. Stat. 49, 486–507 (2021).
Google Scholar
Tibshirani, R. J., Foygel Barber, R., Candes, E. & Ramdas, A. Conformal prediction under covariate shift. Adv. Neural Inf. Process. Syst. 32 (2019).
de Barros, R. & de Carvalho Santos, S. An overview and comprehensive comparison of ensembles for concept drift. Inf. Fusion 52, 213–244 (2019).
Google Scholar
Barros, R. & Santos, S. A large-scale comparison of concept drift detectors. Inf. Sci. 451, 348–370 (2018).
Google Scholar
Ovadia, Y. et al. Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. Proceedings of NeurIPS (2019).
Lobo, J., Del Ser, J., Bifet, A. & Kasabov, N. Spiking neural networks and online learning: an overview and perspectives. Neural Netw. 121, 88–100 (2020).
Google Scholar
Cao, Y. et al. Knowledge-preserving incremental social event detection via heterogeneous GNNs. In Proc. Web Conference 2021 3383–3395 (2021).
Mitra, R. et al. Learning from data with structured missingness. Nat. Mach. Intell. 5, 13–23 (2023).
Google Scholar
Jackson, J., Mitra, R., Hagenbuch, N., McGough, S. & Harbron, C. A complete characterisation of structured missingness. Preprint at https://arxiv.org/abs/2307.02650 (2023).
Bianconi, G. Multilayer Networks (Oxford Univ. Press, 2018).
Bianconi, G. Higher-Order Networks (Cambridge Univ. Press, 2021).
Baptista, A., Sánchez-García, R. J., Baudot, A. & Bianconi, G. Zoo guide to network embedding. Journal of Physics: Complexity. 4 (2023).
Gutknecht, A. J., Wibral, M. & Makkeh, A. Bits and pieces: understanding information decomposition from part–whole relationships and formal logic. Proc. R. Soc. A 477, 20210110 (2021).
Kiang, M. V. et al. Sociodemographic characteristics of missing data in digital phenotyping. Sci. Rep. 11, 14447 (2021).
Google Scholar
Tsiampalis, T. & Panagiotakos, D. B. Missing-data analysis: socio-demographic, clinical and lifestyle determinants of low response rate on self-reported psychological and nutrition related multi-item instruments in the context of the ATTICA epidemiological study. BMC Med. Res. Methodol. 20, 148 (2020).
Google Scholar
Angwin, J., Larson, J., Mattu, S. & Kirchner, L. Machine bias. ProPublica https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing (2016).
Vyas, D. A., Eisenstein, L. G. & Jones, D. S. Hidden in plain sight—reconsidering the use of race correction in clinical algorithms. N. Engl. J. Med. 382, 2465–2474 (2020).
Ibrahim, H., Liu, X., Zariffa, N., Morris, A. D. & Denniston, A. K. Health data poverty: an assailable barrier to equitable digital health care. Lancet Digit. Health 2, E666–E676 (2020).
Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 27, 24–29 (2021).
Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 1565–1576 (2019).
Google Scholar
Buolamwini, J. & Gebru, T. Gender shades: intersectional accuracy disparities in commercial gender classification. In Proc. 1st Conference on Fairness, Accountability and Transparency 77–91 (2018).
Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 111–120 (2021).
Google Scholar
Chen, I. Y., Johansson, F. D. & Sontag, D. Why is my classifier discriminatory? In Proc. NIPS 3543–3554 (2018).
Matovu, E. et al. Enabling the genomic revolution in Africa. Science 344, 1260792 (2014).
Suriyakumar, V. & Narayanan, A. Proc. Mach. Learn. Res. 202, 7395–7405 (2023).
Régis, C., Denis, J.-L., Axente, M. L. & Kishimoto, A. Human-Centered AI: a Multidisciplinary Perspective for policy-Makers, Auditors, and Users (Chapman & Hall, 2024).
Combs, K., Moyer, A. & Bihl, T. J. Uncertainty in visual generative AI. Algorithms 17, 136 (2024).
Google Scholar
Farquhar, S., Kossen, J., Kuhn, L. & Gal, Y. Detecting hallucinations in large language models using semantic entropy. Nature 630, 625–630 (2024).
Google Scholar
Kanwal, N. et al. Are you sure it’s an artifact? Artifact detection and uncertainty quantification in histological images. Comput. Med. Imaging Graph. 112, 102321 (2024).
Google Scholar
Zhou, E. & Lee, D. Generative artificial intelligence, human creativity, and art. PNAS nexus 3, pgae052 (2024).
Google Scholar
Grant, N. Google chatbot’s A.I. images put people of color in Nazi-era uniforms. New York Times https://www.nytimes.com/2024/02/22/technology/google-gemini-german-uniforms.html (2024).
Subramanian, H. V., Canfield, C., Shank, D. B. & Kinnison, M. Combining uncertainty information with AI recommendations supports calibration with domain knowledge. J. Risk Res. 26, 1137–1152 (2023).
Google Scholar
Harish, V., Morgado, F., Stern, A. D. & Das, S. Artificial intelligence and clinical decision making: the new nature of medical uncertainty. Acad. Med. 96, 31–36 (2021).
Google Scholar
DeFrank, J. & Luiz, A. AI-based personalized treatment recommendation for cancer patients. J. Carcinogenesis 21, 57–63 (2022).
European Union. Regulation (EU) 2024/1689. Official J. Eur. Union (2024).
Don’t miss more hot News like this! Click here to discover the latest in AI news!
2025-04-23 00:00:00