AI

What neuroscience can tell AI about learning in continuously changing environments

  • Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2014).

    Article 

    Google Scholar 

  • Mazza, V. & Šlipogor, V. Behavioral flexibility and novel environments: integrating current perspectives for future directions. Curr. Zool. 70, 304–309 (2024).

    Article 

    Google Scholar 

  • Jones, C. B. Behavioral Flexibility in Primates: Causes and Consequences (Springer, 2005).

  • Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proc. 34th International Conference on Machine Learning Vol. 70, 1126–1135 (PMLR, 2017).

  • Koutra, D. et al. Towards agentic AI for science: hypothesis generation, comprehension, quantification, and validation. In ICLR 2025 Workshop Proposals (2025).

  • Faraboschi, P., Giles, E., Hotard, J., Owczarek, K. & Wheeler, A. Reducing the barriers to entry for foundation model training. Preprint at https://doi.org/10.48550/arXiv.2404.08811 (2024).

  • Magee, J. C. & Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43, 95–117 (2020).

    Article 

    Google Scholar 

  • Wu, Y. & Maass, W. A simple model for behavioral time scale synaptic plasticity (BTSP) provides content addressable memory with binary synapses and one-shot learning. Nat. Commun. 16, 342 (2025).

    Article 

    Google Scholar 

  • Zhao, C. et al. Is chain-of-thought reasoning of LLMs a mirage? A data distribution lens. Preprint at https://doi.org/10.48550/arXiv.2508.01191 (2025).

  • Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. & Wermter, S. Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019).

    Article 

    Google Scholar 

  • Kudithipudi, D. et al. Biological underpinnings for lifelong learning machines. Nat. Mach. Intell. 4, 196–210 (2022).

    Article 

    Google Scholar 

  • Gupta, R. et al. Personalized artificial general intelligence (AGI) via neuroscience-inspired continuous learning systems. Preprint at https://doi.org/10.48550/arXiv.2504.20109 (2025).

  • Mazurek, S., Caputa, J., Argasiński, J. K. & Wielgosz, M. Three-factor learning in spiking neural networks: an overview of methods and trends from a machine learning perspective. Preprint at https://doi.org/10.48550/arXiv.2504.05341 (2025).

  • Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).

    Article 

    Google Scholar 

  • Grazzi, R., Siems, J. N., Schrodi, S., Brox, T. & Hutter, F. Is mamba capable of in-context learning? In Proc. International Conference on Automated Machine Learning 1–26 (AutoML, 2024).

  • Singh, A. K. et al. The transient nature of emergent in-context learning in transformers. Adv. Neural Inf. Process. Syst. 36, 27801–27819 (2023).

  • Bai, Y., Chen, F., Wang, H., Xiong, C. & Mei, S. Transformers as statisticians: provable in-context learning with in-context algorithm selection. Adv. Neural Inf. Process. Syst. 36, 57125–57211 (2023).

    Google Scholar 

  • Brown, T. B. et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020).

  • Dai, D. et al. Why can GPT learn incontext? Language models implicitly perform gradient descent as meta-optimizers. In Workshop on Mathematical and Empirical Understanding of Foundation Models (2023).

  • Garg, S., Tsipras, D., Liang, P. S. & Valiant, G. What can transformers learn in-context? A case study of simple function classes. Adv. Neural Inf. Process. Syst. 35, 30583–30598 (2022).

    Google Scholar 

  • Wei, J. et al. Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural Inf. Process. Syst. 35, 24824–24837 (2022).

  • Liu, L. et al. On the variance of the adaptive learning rate and beyond. In Proc. 8th International Conference on Learning Representations (ICLR, 2020).

  • Hemmer, C. J. & Durstewitz, D. True zero-shot inference of dynamical systems preserving long-term statistics. Adv. Neural Inf. Process. Syst. 39, 1–44 (2025).

  • Touvron, H. et al. Llama 2: open foundation and fine-tuned chat models. Preprint at https://doi.org/10.48550/arXiv.2307.09288 (2023).

  • Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A. & Bengio, Y. An empirical investigation of catastrophic forgetting in gradient-based neural networks. Preprint at https://arxiv.org/abs/1312.6211 (2013).

  • Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl Acad. Sci. USA 114, 3521–3526 (2017).

    Article 
    MathSciNet 

    Google Scholar 

  • Ramasesh, V., Lewkowycz, A. & Dyer, E. Effect of scale on catastrophic forgetting in neural networks. In Proc. 10th International Conference on Learning Representations (ICLR, 2022).

  • Carpenter, G. A. & Grossberg, S. ART 2: self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 26, 4919–4930 (1987).

    Article 

    Google Scholar 

  • Jung, D. et al. New insights for the stability-plasticity dilemma in online continual learning. In Proc. 11th International Conference on Learning Representations (ICLR, 2023).

  • McCloskey, M. & Cohen, N. J. Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989).

    Article 

    Google Scholar 

  • French, R. M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128–135 (1999).

    Article 

    Google Scholar 

  • Wang, Z., Li, Y., Shen, L. & Huang, H. A unified and general framework for continual learning. In Proc. 12th International Conference on Learning Representations (ICLR, 2024).

  • Wang, L., Zhang, X., Su, H. & Zhu, J. A comprehensive survey of continual learning: theory, method and application. IEEE Trans. Pattern Anal. Mach. Intell 46, 5362–5383 (2024).

  • Zheng, W.-L., Wu, Z., Hummos, A., Yang, G. R. & Halassa, M. M. Rapid context inference in a thalamocortical model using recurrent neural networks. Nat. Commun. 15, 8275 (2024).

    Article 

    Google Scholar 

  • Nguyen, C. V., Li, Y., Bui, T. D. & Turner, R. E. Variational continual learning. In Proc. 6th International Conference on Learning Representations (ICLR, 2018).

  • Wu, Y., Huang, L.-K., Wang, R., Meng, D. & Wei, Y. Meta continual learning revisited: implicitly enhancing online Hessian approximation via variance reduction. In Proc. 12th International Conference on Learning Representations Vol. 2 (ICLR, 2024).

  • Li, Z. & Hoiem, D. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2935–2947 (2018).

    Article 

    Google Scholar 

  • McDonnell, M. D., Gong, D., Parvaneh, A., Abbasnejad, E. & Van den Hengel, A. Ranpac: random projections and pre-trained models for continual learning. Adv. Neural Inf. Process. Syst. 36, 12022–12053 (2023).

    Google Scholar 

  • Ostapenko, O., Rodriguez, P., Caccia, M. & Charlin, L. Continual learning via local module composition. Adv. Neural Inf. Process. Syst. 34, 30298–30312 (2021).

    Google Scholar 

  • Sorscher, B., Ganguli, S. & Sompolinsky, H. Neural representational geometry underlies few-shot concept learning. Proc. Natl Acad. Sci. USA 119, e2200800119 (2022).

    Article 
    MathSciNet 

    Google Scholar 

  • Riemer, M. et al. Learning to learn without forgetting by maximizing transfer and minimizing interference. In Proc. 7th International Conference on Learning Representations (ICLR, 2019).

  • Shin, H., Lee, J. K., Kim, J. & Kim, J. Continual learning with deep generative replay. Adv. Neural Inf. Process. Syst. 30, 2994–3003 (2017).

    Google Scholar 

  • Dohare, S. et al. Loss of plasticity in deep continual learning. Nature 632, 768–774 (2024).

    Article 

    Google Scholar 

  • van de Ven, G. M., Tuytelaars, T. & Tolias, A. S. Three types of incremental learning. Nat. Mach. Intell. 4, 1185–1197 (2022).

    Article 

    Google Scholar 

  • Houlsby, N. Parameter-efficient transfer learning for NLP. In Proc. 36th International Conference on Machine Learning Vol. 97, 2790–2799 (PMLR, 2019).

  • Hu, E. J. et al. LoRA: low-rank adaptation of large language models. In Proc. 10th International Conference on Learning Representations (ICLR, 2022).

  • Mendez, J. A., van Seijen, H. & EATON, E. Modular lifelong reinforcement learning via neural composition. In Proc.10th International Conference on Learning Representations (ICLR, 2022).

  • Graves, A., Wayne, G. & Danihelka, I. Neural Turing machines. Preprint at https://arxiv.org/abs/1410.5401 (2014).

  • Lewis, P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. Adv. Neural Inf. Process. Syst. 33, 9459–9474 (2020).

  • Yu, Y. et al. RankRAG: unifying context ranking with retrieval-augmented generation in LLMs. Adv. Neural Inf. Process. Syst. 37, 121156–121184 (2024).

  • Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D. & Lillicrap, T. Meta-learning with memory-augmented neural networks. In Proc. 33rd International Conference on Machine Learning Vol. 48, 1842–(PMLR, 2016).

  • Skaggs, W. E. & McNaughton, B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873 (1996).

    Article 

    Google Scholar 

  • Mallory, C. S., Widloski, J. & Foster, D. J. The time course and organization of hippocampal replay. Science 387, 541–548 (2025).

    Article 

    Google Scholar 

  • Grienberger, C. & Magee, J. C. Entorhinal cortex directs learning-related changes in CA1 representations. Nature 611, 554–562 (2022).

    Article 

    Google Scholar 

  • Krueger, D. et al. Out-of-distribution generalization via risk extrapolation (REx). In Proc. 38th International Conference on Machine Learning Vol. 139, 5815–5826 (PMLR, 2021).

  • Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2009).

  • Göring, N. A., Hess, F., Brenner, M., Monfared, Z. & Durstewitz, D. Out-of-domain generalization in dynamical systems reconstruction. In Proc. 41st International Conference on Machine Learning Vol. 235, 16071–16114 (PMLR, 2024).

  • Lampinen, A. K., Chan, S. C., Singh, A. K. & Shanahan, M. The broader spectrum of in-context learning. Preprint at https://arxiv.org/abs/2412.03782 (2024).

  • Li, Y., Ildiz, M. E., Papailiopoulos, D. & Oymak, S. Transformers as algorithms: generalization and stability in in-context learning. In Proc. 40th International Conference on Machine Learning Vol. 202, 19565–19594 (PMLR, 2023).

  • Li, Y., Wei, X., Zhao, H. & Ma, T. Can Mamba in-context learn task mixtures? In ICML 2024 Workshop on In-Context Learning (2024).

  • Oswald, J. V. et al. Transformers learn in-context by gradient descent. In Proc. 40th International Conference on Machine Learning Vol. 202, 35151–35174 (PMLR, 2023).

  • Shen, L., Mishra, A. & Khashabi, D. Position: do pretrained transformers learn in-context by gradient descent? In Proc. 41st International Conference on Machine Learning Vol. 235, 44712–44740 (PMLR, 2024).

  • Li, J., Hou, Y., Sachan, M. & Cotterell, R. What do language models learn in context? The structured task hypothesis. In Proc. 62nd Annual Meeting of the Association for Computational Linguistics Vol. 1, 12365–12379 (Association for Computational Linguistics, 2024).

  • Deutch, G., Magar, N., Natan, T. & Dar, G. In-context learning and gradient descent revisited. In Proc. 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) 1017–1028 (Association for Computational Linguistics, 2024).

  • Yadlowsky, S., Doshi, L. & Tripuraneni, N. Pretraining data mixtures enable narrow model selection capabilities in transformer models. Preprint at https://arxiv.org/abs/2311.00871 (2023).

  • Hahn, M. & Goyal, N. A theory of emergent in-context learning as implicit structure induction. Preprint at https://arxiv.org/abs/2303.07971 (2023).

  • Chan, S. et al. Data distributional properties drive emergent in-context learning in transformers. Adv. Neural Inf. Process. Syst. 35, 18878–18891 (2022).

  • Snell, C., Lee, J., Xu, K. & Kumar, A. Scaling LLM test-time compute optimally can be more effective than scaling model parameters. In Proc. 13th International Conference on Learning Representations, 1-37 (ICLR, 2025).

  • Domjan, M. The Principles of Learning and Behavior 7th edn (Cengage Learning, 2014).

  • Shettleworth, S. J. Cognition, Evolution, and Behavior 2nd edn (Oxford Univ. Press, 2009).

  • Bähner, F. et al. Abstract rule learning promotes cognitive flexibility in complex environments across species. Nat. Commun. 16, 5396 (2025).

    Article 

    Google Scholar 

  • Bouchacourt, F., Tafazoli, S., Mattar, M. G., Buschman, T. J. & Daw, N. D. Fast rule switching and slow rule updating in a perceptual categorization task. eLife 11, e82531 (2022).

    Article 

    Google Scholar 

  • Stokes, M. G. et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78, 364–375 (2013).

    Article 

    Google Scholar 

  • Beiran, M., Meirhaeghe, N., Sohn, H., Jazayeri, M. & Ostojic, S. Parametric control of flexible timing through low-dimensional neural manifolds. Neuron 111, 739–753.e738 (2023).

    Article 

    Google Scholar 

  • Evenden, J. L. & Robbins, T. W. Win–stay behaviour in the rat. Q. J. Exp. Psychol. B 36, 1–26 (1984).

    Article 

    Google Scholar 

  • Cohen, Y., Schneidman, E. & Paz, R. The geometry of neuronal representations during rule learning reveals complementary roles of cingulate cortex and putamen. Neuron 109, 839–851.e839 (2021).

    Article 

    Google Scholar 

  • Tang, H., Costa, V. D., Bartolo, R. & Averbeck, B. B. Differential coding of goals and actions in ventral and dorsal corticostriatal circuits during goal-directed behavior. Cell Rep. 38, 110198 (2022).

    Article 

    Google Scholar 

  • Passecker, J. et al. Activity of prefrontal neurons predict future choices during gambling. Neuron 101, 152–164.e157 (2019).

    Article 

    Google Scholar 

  • Pereira-Obilinovic, U., Hou, H., Svoboda, K. & Wang, X.-J. Brain mechanism of foraging: reward-dependent synaptic plasticity versus neural integration of values. Proc. Natl Acad. Sci. USA 121, e2318521121 (2024).

    Article 

    Google Scholar 

  • Egner, T. & Siqi-Liu, A. Insights into control over cognitive flexibility from studies of task-switching. Curr. Opin. Syst. Biol. 55, 101342 (2024).

    Google Scholar 

  • Uddin, L. Q. Cognitive and behavioural flexibility: neural mechanisms and clinical considerations. Nat. Rev. Neurosci. 22, 167–179 (2021).

    Article 

    Google Scholar 

  • Durstewitz, D. & Seamans, J. K. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-O-methyltransferase genotypes and schizophrenia. Biol. Psychiatry 64, 739–749 (2008).

    Article 

    Google Scholar 

  • Goudar, V., Peysakhovich, B., Freedman, D. J., Buffalo, E. A. & Wang, X.-J. Schema formation in a neural population subspace underlies learning-to-learn in flexible sensorimotor problem-solving. Nat. Neurosci. 26, 879–890 (2023).

    Article 

    Google Scholar 

  • Driscoll, L. N., Shenoy, K. & Sussillo, D. Flexible multitask computation in recurrent networks utilizes shared dynamical motifs. Nat. Neurosci. 27, 1349–1363 (2024).

    Article 

    Google Scholar 

  • Bakermans, J. J. W., Warren, J., Whittington, J. C. R. & Behrens, T. E. J. Constructing future behavior in the hippocampal formation through composition and replay. Nat. Neurosci. 28, 1061–1072 (2025).

    Article 

    Google Scholar 

  • Gallistel, C. R., Fairhurst, S. & Balsam, P. The learning curve: Implications of a quantitative analysis. Proc. Natl Acad. Sci. USA 101, 13124–13131 (2004).

    Article 

    Google Scholar 

  • Papachristos, E. B. & Gallistel, C. Autoshaped head poking in the mouse: a quantitative analysis of the learning curve. J. Exp. Anal. Behav. 85, 293–308 (2006).

    Article 

    Google Scholar 

  • Durstewitz, D., Vittoz, N. M., Floresco, S. B. & Seamans, J. K. Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning. Neuron 66, 438–448 (2010).

    Article 

    Google Scholar 

  • Powell, N. J. & Redish, A. D. Representational changes of latent strategies in rat medial prefrontal cortex precede changes in behaviour. Nat. Commun. 7, 12830 (2016).

    Article 

    Google Scholar 

  • Karlsson, M. P., Tervo, D. G. R. & Karpova, A. Y. Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty. Science 338, 135–139 (2012).

    Article 

    Google Scholar 

  • Russo, E. et al. Coordinated prefrontal state transition leads extinction of reward-seeking behaviors. J. Neurosci. 41, 2406–2419 (2021).

    Article 

    Google Scholar 

  • Miles, J. T., Mullins, G. L. & Mizumori, S. J. Flexible decision-making is related to strategy learning, vicarious trial and error, and medial prefrontal rhythms during spatial set-shifting. Learn. Mem. 31, a053911 (2024).

    Article 

    Google Scholar 

  • Gottlieb, J. & Oudeyer, P.-Y. Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19, 758–770 (2018).

    Article 

    Google Scholar 

  • Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    Article 

    Google Scholar 

  • Burda, Y., Edwards, H., Storkey, A. & Klimov, O. Exploration by random network distillation. In Proc. 7th International Conference on Learning Representations 1–17 (ICLR, 2019).

  • Li, D. et al. A survey on deep active learning: recent advances and new frontiers. IEEE Trans. Neural. Networks. Learn. Syst. 36, 5879–5899 (2025).

    Article 

    Google Scholar 

  • Millidge, B. Deep active inference as variational policy gradients. J. Math. Psychol. 96, 102348 (2020).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Pathak, D., Agrawal, P., Efros, A. A. & Darrell, T. Curiosity-driven exploration by self-supervised prediction. In Proc. 34th International Conference on Machine Learning Vol. 70, 2778–2787 (PMLR, 2017).

  • Settles, B. Active Learning Literature Survey 1648 (Univ. Wisconsin-Madison Department of Computer Sciences, 1995).

  • van der Himst, O. & Lanillos, P. in Active Inference (eds Verbelen, T. et al.) 61–71 (Springer, 2020).

  • Branicky, M. S. Universal computation and other capabilities of hybrid and continuous dynamical systems. Theor. Comput. Sci. 138, 67–100 (1995).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Koiran, P., Cosnard, M. & Garzon, M. Computability with low-dimensional dynamical systems. Theor. Comput. Sci. 132, 113–128 (1994).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Siegelmann, H. T. & Sontag, E. D. On the computational power of neural nets. J. Comput. Syst. Sci. 50, 132–150 (1995).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Fernando, J. & Guitchounts, G. Transformer dynamics: a neuroscientific approach to interpretability of large language models. Preprint at https://arxiv.org/abs/2502.12131 (2025).

  • Geshkovski, B., Letrouit, C., Polyanskiy, Y., & Rigollet, P. A mathematical perspective on transformers. Bull. Amer. Math. Soc. 62, 427-479 (2025).

  • Mikhaeil, J. M., Monfared, Z. & Durstewitz, D. On the difficulty of learning chaotic dynamics with RNNs. Adv. Neural Inf. Process. Syst. Vol. 35, 11297–11312 (2022).

  • Monfared, Z. & Durstewitz, D. Transformation of ReLU-based recurrent neural networks from discrete-time to continuous-time. In Proc. 37th International Conference on Machine Learning Vol. 119, 6999–7009 (PMLR, 2020).

  • Eisenmann, L., Monfared, Z., Göring, N. & Durstewitz, D. Bifurcations and loss jumps in RNN training. Adv. Neural Inf. Process. Syst. 36, 70511–70547 (2023).

    Google Scholar 

  • Ibayashi, H. & Imaizumi, M. Why does sgd prefer flat minima?: Through the lens of dynamical systems. In AAAI Workshop When Machine Learning meets Dynamical Systems: Theory and Applications (2023).

  • Şimşekli, U., Sener, O., Deligiannidis, G. & Erdogdu, M. A. Hausdorff dimension, heavy tails, and generalization in neural networks. Adv. Neural Inf. Process. Syst. 33, 5138–5151 (2020).

  • Zhang, Y., Singh, A.K., Latham, P.E. & Saxe, A. Training dynamics of in-context learning in linear attention. Proc. 42nd International Conference on Machine Learning 267, 76047-76087 (PMLR, 2025).

  • Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    Article 
    MathSciNet 

    Google Scholar 

  • Hinton, G. E. & Sejnowski, T. J. in Parallel Distributed Processing, Volume 1: Explorations in the Microstructure of Cognition: Foundations (eds Rumelhart, D. E. & McClelland, J. L.) 282–317 (MIT Press, 1986).

  • Ambrogioni, L. In search of dispersed memories: generative diffusion models are associative memory networks. Entropy 26, 381 (2024).

    Article 

    Google Scholar 

  • Pham, B. et al. Memorization to generalization: the emergence of diffusion models from associative memory. In NeurIPS 2024 Workshop on Scientific Methods for Understanding Deep Learning (2024).

  • Aksay, E., Gamkrelidze, G., Seung, H. S., Baker, R. & Tank, D. W. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat. Neurosci. 4, 184–193 (2001).

    Article 

    Google Scholar 

  • Khona, M. & Fiete, I. R. Attractor and integrator networks in the brain. Nat. Rev. Neurosci. 23, 744–766 (2022).

    Article 

    Google Scholar 

  • Nair, A. et al. An approximate line attractor in the hypothalamus encodes an aggressive state. Cell 186, 178–193.e115 (2023).

    Article 

    Google Scholar 

  • Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).

    Article 

    Google Scholar 

  • Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).

    Article 

    Google Scholar 

  • Machens, C. K., Romo, R. & Brody, C. D. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307, 1121–1124 (2005).

    Article 

    Google Scholar 

  • Durstewitz, D. Self-organizing neural integrator predicts interval times through climbing activity. J. Neurosci. 23, 5342–5353 (2003).

    Article 

    Google Scholar 

  • Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259–271 (2000).

    Article 

    Google Scholar 

  • Mensh, B. D., Aksay, E., Lee, D. D., Seung, H. S. & Tank, D. W. Spontaneous eye movements in goldfish: oculomotor integrator performance, plasticity, and dependence on visual feedback. Vis. Res. 44, 711–726 (2004).

    Article 

    Google Scholar 

  • Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).

    Article 

    Google Scholar 

  • Fransén, E., Tahvildari, B., Egorov, A. V., Hasselmo, M. E. & Alonso, A. A. Mechanism of graded persistent cellular activity of entorhinal cortex layer V neurons. Neuron 49, 735–746 (2006).

    Article 

    Google Scholar 

  • Vinograd, A., Nair, A., Kim, J. H., Linderman, S. W. & Anderson, D. J. Causal evidence of a line attractor encoding an affective state. Nature 634, 910–918 (2024).

    Article 

    Google Scholar 

  • Schmidt, D., Koppe, G., Monfared, Z., Beutelspacher, M. & Durstewitz, D. Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies. In Proc. 9th International Conference on Learning Representations e1007263 (ICLR, 2021).

  • Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article 

    Google Scholar 

  • Perko, L. Differential Equations and Dynamical Systems 7 (Springer, 2001).

  • Rabinovich, M. I., Huerta, R., Varona, P. & Afraimovich, V. S. Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4, e1000072 (2008).

    Article 
    MathSciNet 

    Google Scholar 

  • Rabinovich, M. I., Varona, P., Selverston, A. I. & Abarbanel, H. D. I. Dynamical principles in neuroscience. Rev. Mod. Phys. 78, 1213–1265 (2006).

    Article 

    Google Scholar 

  • Tsuda, I. Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav. Brain Sci. 24, 793–848 (2001).

    Article 

    Google Scholar 

  • Tsuda, I. Chaotic itinerancy and its roles in cognitive neurodynamics. Curr. Opin. Neurobiol. 31, 67–71 (2015).

    Article 

    Google Scholar 

  • Koch, D. et al. Ghost channels and ghost cycles guiding long transients in dynamical systems. Phys. Rev. Lett. 133, 047202 (2024).

    Article 
    MathSciNet 

    Google Scholar 

  • Lapish, C. C., Balaguer-Ballester, E., Seamans, J. K., Phillips, A. G. & Durstewitz, D. Amphetamine exerts dose-dependent changes in prefrontal cortex attractor dynamics during working memory. J. Neurosci. 35, 10172 (2015).

    Article 

    Google Scholar 

  • Komura, Y. et al. Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature 412, 546–549 (2001).

    Article 

    Google Scholar 

  • Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).

    Article 

    Google Scholar 

  • Spisak, T. & Friston, K. Self-orthogonalizing attractor neural networks emerging from the free energy principle. Preprint at https://doi.org/10.48550/arXiv.2505.22749 (2025).

  • Rouse, N. A. & Daltorio, K. A. Visualization of stable heteroclinic channel-based movement primitives. IEEE Rob. Autom. Lett. 6, 2343–2348 (2021).

    Article 

    Google Scholar 

  • Mengers, N., Rouse, N. & Daltorio, K. A. Stable heteroclinic channels for controlling a simulated aquatic serpentine robot in narrow crevices. Front. Electron. 6, 1507644 (2025).

    Article 

    Google Scholar 

  • Durstewitz, D. & Seamans, J. K. The computational role of dopamine D1 receptors in working memory. Neural Netw. 15, 561–572 (2002).

    Article 

    Google Scholar 

  • Chahine, M. et al. Robust flight navigation out of distribution with liquid neural networks. Sci. Rob. 8, eadc8892 (2023).

    Article 

    Google Scholar 

  • Baronig, M., Ferrand, R., Sabathiel, S. & Legenstein, R. Advancing spatio-temporal processing through adaptation in spiking neural networks. Nat. Commun. 16, 5776 (2025).

    Article 

    Google Scholar 

  • Wang, G. et al. Hierarchical reasoning model. Preprint at https://doi.org/10.48550/arXiv.2506.21734 (2025).

  • Doya, K. Bifurcations in the learning of recurrent neural networks. In Proc. 1992 IEEE International Symposium on Circuits and Systems Vol. 6, 2777–2780 (IEEE, 1992).

  • Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    Article 

    Google Scholar 

  • Bertschinger, N. & Natschläger, T. Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16, 1413–1436 (2004).

    Article 
    MATH 

    Google Scholar 

  • Shew, W. L., Yang, H., Petermann, T., Roy, R. & Plenz, D. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J. Neurosci. 29, 15595–15600 (2009).

    Article 

    Google Scholar 

  • Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158, 132–152 (2017).

    Article 

    Google Scholar 

  • Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    Article 

    Google Scholar 

  • Stemmler, M. & Koch, C. How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nat. Neurosci. 2, 521–527 (1999).

    Article 

    Google Scholar 

  • Zhong, L. et al. Unsupervised pretraining in biological neural networks. Nature 644, 741–748 (2025).

  • Citri, A. & Malenka, R. C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 33, 18–41 (2008).

    Article 

    Google Scholar 

  • Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    Article 

    Google Scholar 

  • Fu, M. & Zuo, Y. Experience-dependent structural plasticity in the cortex. Trends Neurosci. 34, 177–187 (2011).

    Article 

    Google Scholar 

  • Sagi, Y. et al. Learning in the fast lane: new insights into neuroplasticity. Neuron 73, 1195–1203 (2012).

    Article 

    Google Scholar 

  • Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proc. 32nd International conference on machine learning Vol. 37, 448–456 (PMLR, 2015).

  • Salimans, T. & Kingma, D. P. Weight normalization: a simple reparameterization to accelerate training of deep neural networks. Adv. Neural Inf. Process. Syst. 29, 901–909 (2016).

  • Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article 

    Google Scholar 

  • Kaplanis, C., Shanahan, M. & Clopath, C. Continual reinforcement learning with complex synapses. In Proc. 35th International Conference on Machine Learning 2497–2506 (PMLR, 2018).

  • Laborieux, A., Ernoult, M., Hirtzlin, T. & Querlioz, D. Synaptic metaplasticity in binarized neural networks. Nat. Commun. 12, 2549 (2021).

    Article 

    Google Scholar 

  • Schultz, W. Dopamine reward prediction-error signalling: a two-component response. Nat. Rev. Neurosci. 17, 183–195 (2016).

    Article 

    Google Scholar 

  • Doya, K. Metalearning and neuromodulation. Neural Netw. 15, 495–506 (2002).

    Article 

    Google Scholar 

  • Izhikevich, E. M. Solving the distal reward problem through linkage of stdp and dopamine signaling. Cereb. Cortex 17, 2443–2452 (2007).

    Article 

    Google Scholar 

  • Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).

    Article 

    Google Scholar 

  • Hensch, T. K. Critical period regulation. Annu. Rev. Neurosci. 27, 549–579 (2004).

    Article 

    Google Scholar 

  • Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z. & Ionescu, C. Using fast weights to attend to the recent past. Adv. Neural Inf. Process. Syst. 29, 4331–4339 (2016).

    Google Scholar 

  • Hofmann, M., Becker, M. F. P., Tetzlaff, C. & Mäder, P. Concept transfer of synaptic diversity from biological to artificial neural networks. Nat. Commun. 16, 5112 (2025).

    Article 

    Google Scholar 

  • Benna, M. K. & Fusi, S. Computational principles of synaptic memory consolidation. Nat. Neurosci. 19, 1697–1706 (2016).

    Article 

    Google Scholar 

  • Ralambomihanta, T. R. et al. Learning from the past with cascading eligibility traces. Preprint at https://doi.org/10.48550/arXiv.2506.14598 (2025).

  • Wang, J. X. Meta-learning in natural and artificial intelligence. Curr. Opin. Syst. Biol. 38, 90–95 (2021).

    Google Scholar 

  • Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P. & Nabi, M. Learning to remember: a synaptic plasticity driven framework for continual learning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 11321–11329 (IEEE, 2019).

  • Ben-Iwhiwhu, E., Nath, S., Pilly, P. K., Kolouri, S. & Soltoggio, A. Lifelong reinforcement learning with modulating masks. Trans. Mach. Learn. Res. https://openreview.net/forum?id=V7tahqGrOq (2023).

  • Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation. In Proc. 35th International Conference on Machine Learning Vol. 80, 3559–3568 (PMLR, 2018).

  • Shervani-Tabar, N. & Rosenbaum, R. Meta-learning biologically plausible plasticity rules with random feedback pathways. Nat. Commun. 14, 1805 (2023).

    Article 

    Google Scholar 

  • Yu, Y., Jin, Y., Xiao, Y. & Yan, Y. A Recurrent spiking network with hierarchical intrinsic excitability modulation for schema learning. Preprint at https://doi.org/10.48550/arXiv.2501.14539 (2025).

  • Bengio, Y., Louradour, J., Collobert, R. & Weston, J. Curriculum learning. In Proc. 26th Annual International Conference on Machine Learning 41–48 (Association for Computing Machinery, 2009).

  • Brock, A., Lim, T., Ritchie, J. M. & Weston, N. J. FreezeOut: accelerate training by progressively freezing layers. In 10th NIPS Workshop on Optimization for Machine Learning Vol. 10 (NIPS, 2017).

  • Sorrenti, A. et al. Selective freezing for efficient continual learning. In 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) 3542–3551 (IEEE, 2023).

  • Shi, T., Wu, Y., Song, L., Zhou, T. & Zhao, J. Efficient reinforcement finetuning via adaptive curriculum learning. Preprint at https://doi.org/10.48550/arXiv.2504.05520 (2025).

  • Tolman, E. C. Purposive Behavior in Animals and Men (Appleton-Century-Crofts, 1932).

  • Tolman, E. C. & Honzik, C. H. Introduction and removal of reward, and maze performance in rats. Univ. Calif. Pub. Psychol. 4, 257–275 (1930).

    Google Scholar 

  • Ke, N. R. et al. Sparse attentive backtracking: temporal credit assignment through reminding. Adv. Neural Inf. Process. Syst. 31, 7651–7662 (2018).

    Google Scholar 

  • McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419 (1995).

    Article 

    Google Scholar 

  • Sun, W., Advani, M., Spruston, N., Saxe, A. & Fitzgerald, J. E. Organizing memories for generalization in complementary learning systems. Nat. Neurosci. 26, 1438–1448 (2023).

    Article 

    Google Scholar 

  • Samborska, V., Butler, J. L., Walton, M. E., Behrens, T. E. J. & Akam, T. Complementary task representations in hippocampus and prefrontal cortex for generalizing the structure of problems. Nat. Neurosci. 25, 1314–1326 (2022).

    Article 

    Google Scholar 

  • Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    Article 

    Google Scholar 

  • Treves, A. & Rolls, E. T. Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994).

    Article 

    Google Scholar 

  • Kumaran, D., Hassabis, D. & McClelland, J. L. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends Cogn. Sci. 20, 512–534 (2016).

    Article 

    Google Scholar 

  • Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article 

    Google Scholar 

  • Foster, D. J. Replay comes of age. Annu. Rev. Neurosci. 40, 581–602 (2017).

    Article 

    Google Scholar 

  • Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. & Wayne, G. Experience replay for continual learning. Adv. Neural Inf. Process. Syst. 32, 350–360 (2019).

    Google Scholar 

  • Shi, Q. et al. Hybrid neural networks for continual learning inspired by corticohippocampal circuits. Nat. Commun. 16, 1272 (2025).

    Article 

    Google Scholar 

  • Du, J. -l, Wei, H. -p, Wang, Z. -r, Wong, S. T. & Poo, M. -m Long-range retrograde spread of LTP and LTD from optic tectum to retina. Proc. Natl Acad. Sci. USA 106, 18890–18896 (2009).

    Article 

    Google Scholar 

  • Zhang, T. et al. Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks. Sci. Adv. 7, eabh0146 (2021).

    Article 
    MathSciNet 

    Google Scholar 

  • Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).

    Article 
    MATH 

    Google Scholar 

  • Kohonen, T. Analysis of a simple self-organizing process. Biol. Cybern. 44, 135–140 (1982).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Oja, E. Simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982).

    Article 
    MathSciNet 

    Google Scholar 

  • Oja, E. & Karhunen, J. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. J. Math. Anal. Appl. 106, 69–84 (1985).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Hertz, J. A., Krogh, A. & Palmer, R. G. Introduction To The Theory Of Neural Computation, I. (Westview Press, 1991).

  • Kuriscak, E., Marsalek, P., Stroffek, J. & Toth, P. G. Biological context of Hebb learning in artificial neural networks, a review. Neurocomputing 152, 27–35 (2015).

    Article 

    Google Scholar 

  • Schmidgall, S. et al. Brain-inspired learning in artificial neural networks: a review. APL Mach. Learn. 2, 021501 (2024).

    Article 

    Google Scholar 

  • Drew, P. J. & Abbott, L. F. Extending the effects of spike-timing-dependent plasticity to behavioral timescales. Proc. Natl Acad. Sci. USA 103, 8876–8881 (2006).

    Article 

    Google Scholar 

  • Soltoggio, A. Short-term plasticity as cause–effect hypothesis testing in distal reward learning. Biol. Cybern. 109, 75–94 (2015).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Lu, S. & Sengupta, A. Deep unsupervised learning using spike-timing-dependent plasticity. Neuromorphic Comput. Eng. 4, 024004 (2024).

    Article 

    Google Scholar 

  • Apolinario, M. P. E. & Roy, K. S-TLLR: STDP-inspired temporal local learning rule for spiking neural networks. Trans. Mach. Learn. Res. https://openreview.net/forum?id=vlQ56aWJhl (2025).

  • Rahman, N. A. & Yusoff, N. Modulated spike-time dependent plasticity (STDP)-based learning for spiking neural network (SNN): a review. Neurocomputing 618, 129170 (2025).

    Article 

    Google Scholar 

  • Kudithipudi, D. et al. Neuromorphic computing at scale. Nature 637, 801–812 (2025).

    Article 

    Google Scholar 

  • Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 1133–1142 (2015).

    Article 

    Google Scholar 

  • Qian, F. K., Li, Y. & Magee, J. C. Mechanisms of experience-dependent place-cell referencing in hippocampal area CA1. Nat. Neurosci. 28, 1486–1496 (2025).

    Article 

    Google Scholar 

  • Pang, R. & Recanatesi, S. A non-Hebbian code for episodic memory. Sci. Adv. 11, eado4112 (2025).

    Article 

    Google Scholar 

  • Fusi, S., Asaad, W. F., Miller, E. K. & Wang, X.-J. A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales. Neuron 54, 319–333 (2007).

    Article 

    Google Scholar 

  • Russo, E. & Durstewitz, D. Cell assemblies at multiple time scales with arbitrary lag constellations. eLife 6, e19428 (2017).

    Article 

    Google Scholar 

  • Cavanagh, S. E., Hunt, L. T. & Kennerley, S. W. A diversity of intrinsic timescales underlie neural computations. Front. Neural Circuits 14, 615626 (2020).

    Article 

    Google Scholar 

  • Gao, R., van den Brink, R. L., Pfeffer, T. & Voytek, B. Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture. eLife 9, e61277 (2020).

    Article 

    Google Scholar 

  • Zijlmans, M. et al. High-frequency oscillations as a new biomarker in epilepsy. Ann. Neurol. 71, 169–178 (2012).

    Article 

    Google Scholar 

  • Spaak, E., de Lange, F. P. & Jensen, O. Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J. Neurosci. 34, 3536–3544 (2014).

    Article 

    Google Scholar 

  • Momtaz, S. & Bidelman, G. M. Effects of stimulus rate and periodicity on auditory cortical entrainment to continuous sounds. eneuro 11, ENEURO.0027-0023.2024 (2024).

    Article 

    Google Scholar 

  • Durstewitz, D. Neural representation of interval time. NeuroReport 15, 745–749 (2004).

    Article 

    Google Scholar 

  • Rosenberg, M., Zhang, T., Perona, P. & Meister, M. Mice in a labyrinth show rapid learning, sudden insight, and efficient exploration. eLife 10, e66175 (2021).

    Article 

    Google Scholar 

  • Zipser, D. Recurrent network model of the neural mechanism of short-term active memory. Neural Comput. 3, 179–193 (1991).

    Article 

    Google Scholar 

  • Rajalingham, R., Piccato, A. & Jazayeri, M. Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task. Nat. Commun. 13, 5865 (2022).

    Article 

    Google Scholar 

  • Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    Article 

    Google Scholar 

  • Gu, A. & Dao, T. Mamba: linear-time sequence modeling with selective state spaces. Preprint at https://doi.org/10.48550/arXiv.2312.00752 (2023).

  • Bulatov, A., Kuratov, Y. & Burtsev, M. Recurrent memory transformer. Adv. Neural Inf. Process. Syst. 35, 11079–11091 (2022).

  • Hutchins, D., Schlag, I., Wu, Y., Dyer, E. & Neyshabur, B. Block-recurrent transformers. Adv. Neural Inf. Process. Syst. 35, 33248–33261 (2022).

    Google Scholar 

  • Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vision Sci. 1, 417–446 (2015).

    Article 

    Google Scholar 

  • Kumar, S. et al. Shared functional specialization in transformer-based language models and the human brain. Nat. Commun. 15, 5523 (2024).

    Article 

    Google Scholar 

  • Whittington, J. C., Warren, J. & Behrens, T. E. Relating transformers to models and neural representations of the hippocampal formation. Preprint at https://doi.org/10.48550/arXiv.2112.04035 (2021).

  • Miikkulainen, R. Neuroevolution insights into biological neural computation. Science 387, eadp7478 (2025).

    Article 

    Google Scholar 

  • Durstewitz, D., Koppe, G. & Thurm, M. I. Reconstructing computational system dynamics from neural data with recurrent neural networks. Nat. Rev. Neurosci. 24, 693–710 (2023).

    Article 

    Google Scholar 

  • Brenner, M., Weber, E., Koppe, G. & Durstewitz, D. Learning interpretable hierarchical dynamical systems models from time series data. In Proc. 13th International Conference on Learning Representations 1–37 (ICLR, 2025).

  • Brenner, M., Hess, F., Koppe, G. & Durstewitz, D. Integrating multimodal data for joint generative modeling of complex dynamics. In Proc. 41st International Conference on Machine Learning Vol. 235, 4482–4516 (PMLR, 2024).

  • Glaser, J., Whiteway, M., Cunningham, J. P., Paninski, L. & Linderman, S. Recurrent switching dynamical systems models for multiple interacting neural populations. Adv. Neural Inf. Process. Syst. 33, 14867–14878 (2020).

    Google Scholar 

  • Pals, M., Sağtekin, A. E., Pei, F., Gloeckler, M. & Macke, J. H. Inferring stochastic low-rank recurrent neural networks from neural data. Adv. Neural Inf. Process. Syst. 37, 18225–18264 (2024).

    Google Scholar 

  • Hess, F., Monfared, Z., Brenner, M. & Durstewitz, D. Generalized teacher forcing for learning chaotic dynamics. In Proc. 11th International Conference on Machine Learning 13017–13049 (ICML, 2023).

  • Platt, J. A., Penny, S. G., Smith, T. A., Chen, T.-C. & Abarbanel, H. D. I. Constraining chaos: enforcing dynamical invariants in the training of reservoir computers. Chaos 33, 103107 (2023).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Lim, S. et al. Inferring learning rules from distributions of firing rates in cortical neurons. Nat. Neurosci. 18, 1804–1810 (2015).

    Article 

    Google Scholar 

  • Mehta, Y. et al. Model based inference of synaptic plasticity rules. Adv. Neural Inf. Process. Syst. 37, 48519–48540 (2024).

    Google Scholar 

  • Chen, S., Yang, Q. & Lim, S. Efficient inference of synaptic plasticity rule with Gaussian process regression. iScience 26, 106182 (2023).

    Article 

    Google Scholar 

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-11-28 00:00:00

    Related Articles

    Back to top button