AI

ImmunoStruct enables multimodal deep learning for immunogenicity prediction

  • Gupta, M. et al. Recent advances in cancer vaccines: challenges, achievements, and futuristic prospects. Vaccines 10, 2011 (2022).

    Article 

    Google Scholar 

  • Fan, T. et al. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct. Target. Ther. 8, 450 (2023).

    Article 

    Google Scholar 

  • Blass, E. & Ott, P. A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).

    Article 

    Google Scholar 

  • Bjerregaard, A.-M. et al. An analysis of natural T cell responses to predicted tumor neoepitopes. Front. Immunol. 8, 1566 (2017).

    Article 

    Google Scholar 

  • Katsikis, P. D., Ishii, K. J. & Schliehe, C. Challenges in developing personalized neoantigen cancer vaccines. Nat. Rev. Immunol. 24, 213–227 (2024).

    Article 

    Google Scholar 

  • Ott, P. A. et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell 183, 347–362 (2020).

    Article 

    Google Scholar 

  • Wells, D. K. et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell 183, 818–834 (2020).

    Article 

    Google Scholar 

  • Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article 

    Google Scholar 

  • Pishesha, N., Harmand, T. J. & Ploegh, H. L. A guide to antigen processing and presentation. Nat. Rev. Immunol. 22, 751–764 (2022).

    Article 

    Google Scholar 

  • Tynan, F. E. et al. The immunogenicity of a viral cytotoxic T cell epitope is controlled by its MHC-bound conformation. J. Exp. Med. 202, 1249–1260 (2005a).

    Article 

    Google Scholar 

  • Wu, P. et al. Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition. Mol. Cell 73, 1015–1027 (2019).

    Article 

    Google Scholar 

  • Weber, J. K. et al. Unsupervised and supervised AI on molecular dynamics simulations reveals complex characteristics of HLA-a2-peptide immunogenicity. Brief. Bioinforma. 25, bbad504 (2024).

    Article 

    Google Scholar 

  • Reynisson, B., Alvarez, B., Paul, S., Peters, B. & Nielsen, M. Netmhcpan-4.1 and netmhciipan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 48, W449–W454 (2020).

    Article 

    Google Scholar 

  • Shao, X. M. et al. High-throughput prediction of MHC class I and II neoantigens with MHCnuggets. Cancer Immunol. Res. 8, 396–408 (2020).

    Article 

    Google Scholar 

  • O’Donnell, T. J., Rubinsteyn, A. & Laserson, U. MHCflurry 2.0: improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing. Cell Syst. 11, 42–48 (2020).

    Article 

    Google Scholar 

  • Albert, B. A. et al. Deep neural networks predict class I major histocompatibility complex epitope presentation and transfer learn neoepitope immunogenicity. Nat. Mach. Intell. 5, 861–872 (2023).

    Article 

    Google Scholar 

  • Saotome, K. et al. Structural analysis of cancer-relevant TCR-CD3 and peptide-MHC complexes by cryoEM. Nat. Commun. 14, 2401 (2023).

    Article 

    Google Scholar 

  • Jiang, D. et al. Neoapred: a deep-learning framework for predicting immunogenic neoantigen based on surface and structural features of peptide–human leukocyte antigen complexes. Bioinformatics 40, btae547 (2024).

    Article 

    Google Scholar 

  • Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2018).

    Article 

    Google Scholar 

  • Koşaloğlu-Yalçın, Z. et al. The Cancer Epitope Database and Analysis Resource (CEDAR). Nucleic Acids Res. 51, D845–D852 (2023).

    Article 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 

    Google Scholar 

  • Gfeller, D. et al. Improved predictions of antigen presentation and TCR recognition with MixMHCpred2. 2 and PRIME2.0 reveal potent SARS-CoV-2 CD8+ T-cell epitopes. Cell Syst. 14, 72–83 (2023).

    Article 

    Google Scholar 

  • Kim, J. Y., Bang, H., Noh, S.-J. & Choi, J. K. DeepNeo: a webserver for predicting immunogenic neoantigens. Nucleic Acids Res. 51, W134–W140 (2023).

    Article 

    Google Scholar 

  • Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) equivariant graph neural networks. In Proc. International Conference on Machine Learning 9323–9332 (PMLR, 2021).

  • Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In Proc. 5th International Conference on Learning Representations (ICLR, 2017).

  • Vaswani, A. et al. Attention is all you need. In Proc. Advances in Neural Information Processing Systems 5998–6008 (NIPS, 2017).

  • Xiao, X. et al. HGTDP-DTA: hybrid graph-transformer with dynamic prompt for drug-target binding affinity prediction. In Proc. International Conference on Neural Information Processing 340–354 (Springer, 2024).

  • Kingma, D. P. Auto-encoding Variational Bayes. In Proc. International Conference on Learning Representations (ICLR, 2014).

  • Liao, D. et al. RNAGenScape: property-guided optimization and interpolation of mRNA sequences with manifold Langevin dynamics. Preprint at https://doi.org/10.48550/arXiv.2510.24736 (2025).

  • Liu, C. et al. DiffKillR: killing and recreating diffeomorphisms for cell annotation in dense microscopy images. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing 1–5 (IEEE, 2025).

  • Sun, X. et al. Geometry-aware generative autoencoders for warped Riemannian metric learning and generative modeling on data manifolds. In Proc. International Conference on Artificial Intelligence and Statistics (PMLR, 2024).

  • Osorio, D., Rondón-Villarreal, P. & Torres, R. Peptides: a package for data mining of antimicrobial peptides. R J. 7, 4–14 (2015).

  • Zhuang, F. et al. A comprehensive survey on transfer learning. Proc. IEEE 109, 43–76 (2020).

    Article 

    Google Scholar 

  • Richman, L. P., Vonderheide, R. H. & Rech, A. J. Neoantigen dissimilarity to the self-proteome predicts immunogenicity and response to immune checkpoint blockade. Cell Syst. 9, 375–382 (2019).

    Article 

    Google Scholar 

  • Łuksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    Article 

    Google Scholar 

  • Balachandran, V. P. et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 551, 512–516 (2017).

    Article 

    Google Scholar 

  • Perry, J. S. A. & Hsieh, C.-S. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol. Rev. 271, 141–155 (2016).

    Article 

    Google Scholar 

  • Ghorani, E. et al. Differential binding affinity of mutated peptides for MHC class I is a predictor of survival in advanced lung cancer and melanoma. Ann. Oncol. 29, 271–279 (2018).

    Article 

    Google Scholar 

  • Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492 (2019).

    Article 

    Google Scholar 

  • Tadros, D. M., Eggenschwiler, S., Racle, J. & Gfeller, D. The MHC motif atlas: a database of MHC binding specificities and ligands. Nucleic Acids Res. 51, D428–D437 (2023).

    Article 

    Google Scholar 

  • Sidney, J., Peters, B., Frahm, N., Brander, C. & Sette, A. HLA class I supertypes: a revised and updated classification. BMC Immunol. 9, 1 (2008).

    Article 

    Google Scholar 

  • Nguyen, A. T., Szeto, C. & Gras, S. The pockets guide to HLA class I molecules. Biochem. Soc. Trans. 49, 2319–2331 (2021).

    Article 

    Google Scholar 

  • Tynan, F. E. et al. T cell receptor recognition of a ‘super-bulged’ major histocompatibility complex class I-bound peptide. Nat. Immunol. 6, 1114–1122 (2005b).

    Article 

    Google Scholar 

  • Tynan, F. E. et al. At cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule. Nat. Immunol. 8, 268–276 (2007).

    Article 

    Google Scholar 

  • Ding, Y.-H. et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-a2/tax peptide complex using different TCR amino acids. Immunity 8, 403–411 (1998).

    Article 

    Google Scholar 

  • Borch, A. et al. Improve: a feature model to predict neoepitope immunogenicity through broad-scale validation of T-cell recognition. Front. Immunol. 15, 1360281 (2024).

    Article 

    Google Scholar 

  • Rappaport, A. R. et al. A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: phase 1 trial interim results. Nat. Med. 30, 1013–1022 (2024).

    Article 

    Google Scholar 

  • Chen, J.-L. et al. Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J. Exp. Med. 201, 1243–1255 (2005).

    Article 

    Google Scholar 

  • Lu, D. et al. KRAS G12V neoantigen specific T cell receptor for adoptive T cell therapy against tumors. Nat. Commun. 14, 6389 (2023).

    Article 

    Google Scholar 

  • Poole, A. et al. Therapeutic high affinity T cell receptor targeting a KRASG12D cancer neoantigen. Nat. Commun. 13, 5333 (2022).

    Article 

    Google Scholar 

  • Nusrat, F. et al. The clinical implications of KRAS mutations and variant allele frequencies in pancreatic ductal adenocarcinoma. J. Clin. Med. 13, 2103 (2024).

    Article 

    Google Scholar 

  • Weiskopf, D. et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc. Natl Acad. Sci. USA 110, E2046–E2053 (2013).

    Article 

    Google Scholar 

  • Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    Article 
    MathSciNet 

    Google Scholar 

  • Liu, C. et al. Imageflownet: forecasting multiscale trajectories of disease progression with irregularly-sampled longitudinal medical images. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing 1–5 (IEEE, 2025).

  • Liu, C. et al. Cuts: a deep learning and topological framework for multigranular unsupervised medical image segmentation. In Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention 155–165 (Springer, 2024).

  • Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Proc. Advances in Neural Information Processing Systems 32, 8026–8037 (NIPS, 2019).

  • Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. In Proc. International Conference on Machine Learning 1597–1607 (PMLR, 2020).

  • Zbontar, J., Jing, L., Misra, I., LeCun, Y. & Deny, S. Barlow twins: self-supervised learning via redundancy reduction. In Proc. International Conference on Machine Learning 12310–12320 (PMLR, 2021).

  • Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In Proc. International Conference on Learning Representations (ICLR, 2019).

  • Loshchilov, I. & Hutter, F. SGDR: stochastic gradient descent with warm restarts. In Proc. International Conference on Learning Representations (ICLR, 2017).

  • Sette, A. & Sidney, J. Nine major HLA class I supertypes account for the vast preponderance of HLA-a and -b polymorphism. Immunogenetics 50, 201–212 (1999).

    Article 

    Google Scholar 

  • Mirdita, M. et al. Colabfold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 

    Google Scholar 

  • Jamasb, A. et al. Graphein—a Python library for geometric deep learning and network analysis on biomolecular structures and interaction networks. In Proc. Advances in Neural Information Processing Systems 35, 27153–27167 (NIPS, 2022).

  • Zaidi, N. et al. Role of in silico structural modeling in predicting immunogenic neoepitopes for cancer vaccine development. JCI Insight 5, (2020).

  • Slota, M., Lim, J.-B., Dang, Y. & Disis, M. L. ELISpot for measuring human immune responses to vaccines. Expert Rev. Vaccines 10, 299–306 (2011).

    Article 

    Google Scholar 

  • Yang, F. et al. Validation of an IFN-gamma ELISpot assay to measure cellular immune responses against viral antigens in non-human primates. Gene Ther. 29, 41–54 (2022).

    Article 

    Google Scholar 

  • Nelde, A. et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat. Immunol. 22, 74–85 (2021).

    Article 

    Google Scholar 

  • Givenchian, K. B. et al. ImmunoStruct: ImmunoStruct release. Zenodo https://doi.org/10.5281/zenodo.17535443 (2025).

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-12-31 00:00:00

    Related Articles

    Back to top button