AI

Advancing molecular machine learning representations with stereoelectronics-infused molecular graphs

  • Hoffmann, R. & Laszlo, P. Representation in chemistry. Angew. Chem. Int. Ed. Engl. 30, 1–16 (1991).

    Article 

    Google Scholar 

  • Cooke, H. A historical study of structures for communication of organic chemistry information prior to 1950. Org. Biomol. Chem. 2, 3179 (2004).

    Article 

    Google Scholar 

  • Springer, M. T. Improving students’ understanding of molecular structure through broad-based use of computer models in the undergraduate organic chemistry lecture. J. Chem. Educ. 91, 1162–1168 (2014).

    Article 

    Google Scholar 

  • Gómez-Bombarelli, R. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120–1127 (2016).

    Article 

    Google Scholar 

  • Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).

    Article 

    Google Scholar 

  • Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. M. & Ahsan, M. J. machine learning in drug discovery: a review. Artif. Intell. Rev. 55, 1947–1999 (2022).

    Article 

    Google Scholar 

  • Gallegos, L. C., Luchini, G., St. John, P. C., Kim, S. & Paton, R. S. Importance of engineered and learned molecular representations in predicting organic reactivity, selectivity, and chemical properties. Acc. Chem. Res. 54, 827–836 (2021).

    Article 

    Google Scholar 

  • Sandfort, F., Strieth-Kalthoff, F., Kühnemund, M., Beecks, C. & Glorius, F. A structure-based platform for predicting chemical reactivity. Chem 6, 1379–1390 (2020).

    Article 

    Google Scholar 

  • Ross, J. et al. Large-scale chemical language representations capture molecular structure and properties. Nat. Mach. Intell. 4, 1256–1264 (2022).

    Article 

    Google Scholar 

  • Yang, Z., Chakraborty, M. & White, A. D. Predicting chemical shifts with graph neural networks. Chem. Sci. 12, 10802–10809 (2021).

    Article 

    Google Scholar 

  • Zhou, J. et al. Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020).

    Article 

    Google Scholar 

  • Fang, X. et al. Geometry-enhanced molecular representation learning for property prediction. Nat. Mach. Intell. 4, 127–134 (2022).

    Article 

    Google Scholar 

  • Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    Article 

    Google Scholar 

  • Qi, Y., Gong, W. & Yan, Q. Bridging deep learning force fields and electronic structures with a physics-informed approach. Preprint at https://doi.org/10.48550/arXiv.2403.13675 (2024).

  • Fabrizio, A., Briling, K. R. & Corminboeuf, C. SPAHM: the spectrum of approximated Hamiltonian matrices representations. Digital Discovery 1, 286–294 (2022).

    Article 

    Google Scholar 

  • Elton, D. C., Boukouvalas, Z., Butrico, M. S., Fuge, M. D. & Chung, P. W. Applying machine learning techniques to predict the properties of energetic materials. Sci. Rep. 8, 9059 (2018).

    Article 

    Google Scholar 

  • Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).

    Article 

    Google Scholar 

  • Pozdnyakov, S. N. & Ceriotti, M. Smooth, exact rotational symmetrization for deep learning on point clouds. Preprint at https://doi.org/10.48550/arXiv.2305.19302 (2023).

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article 

    Google Scholar 

  • Černý, J. & Hobza, P. Non-covalent interactions in biomacromolecules. Phys. Chem. Chem. Phys. 9, 5291 (2007).

    Article 

    Google Scholar 

  • Anighoro, A. in Quantum Mechanics in Drug Discovery (ed. Heifetz, A.) 75–86 (Humana, Springer, 2020).

  • Wheeler, S. E., Seguin, T. J., Guan, Y. & Doney, A. C. Noncovalent interactions in organocatalysis and the prospect of computational catalyst design. Acc. Chem. Res. 49, 1061–1069 (2016).

    Article 

    Google Scholar 

  • Weinhold, F. & Landis, C. R. Natural bond orbitals and extensions of localized bonding concepts. Chem. Educ. Res. Pract. 2, 91–104 (2001).

    Article 

    Google Scholar 

  • Llenga, S. & Gryn’ova, G. Matrix of orthogonalized atomic orbital coefficients representation for radicals and ions. J. Chem. Phys. 158, 214116 (2023).

    Article 

    Google Scholar 

  • Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

    Article 

    Google Scholar 

  • Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. Catboost: unbiased boosting with categorical features. Adv. Neur. Inf. Proc. Syst. 31, 6638–6648 (2018).

    Google Scholar 

  • NVIDIA. MegaMolBART. GitHub https://github.com/NVIDIA/MegaMolBART (2022).

  • Heid, E. et al. Chemprop: a machine learning package for chemical property prediction. J. Chem. Inf. Model 64, 9–17 (2024).

    Article 

    Google Scholar 

  • Alabugin, I. V. Stereoelectronic Effects: A Bridge Between Structure and Reactivity (Wiley, 2016).

  • Echenique, P. & Alonso, J. L. A mathematical and computational review of Hartree–Fock SCF methods in quantum chemistry. Mol. Phys. 105, 3057–3098 (2007).

    Article 

    Google Scholar 

  • Burke, K. & Wagner, L. O. DFT in a nutshell. Int. J. Quantum. Chem. 113, 96–101 (2013).

    Article 

    Google Scholar 

  • Goerigk, L. & Grimme, S. Double-hybrid density functionals. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 576–600 (2014).

    Article 

    Google Scholar 

  • Kneiding, H. et al. Deep learning metal complex properties with natural quantum graphs. Digital Discovery 2, 618–633 (2023).

    Article 

    Google Scholar 

  • Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010).

    Article 

    Google Scholar 

  • Axelrod, S. & Gómez-Bombarelli, R. GEOM, energy-annotated molecular conformations for property prediction and molecular generation. Sci. Data 9, 185 (2022).

    Article 

    Google Scholar 

  • Malinin, A., Prokhorenkova, L. & Ustimenko, A. Uncertainty in gradient boosting via ensembles. Preprint at https://doi.org/10.48550/arXiv.2006.10562 (2020).

  • Chua, K., Calandra, R., McAllister, R. & Levine, S. Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In Proc. 32nd International Conference on Neural Information Processing Systems 4759–4770 (NIPS, 2018).

  • Goan, E. & Fookes, C. in Case Studies in Applied Bayesian Data Science (eds Mengerson, K. L. et al.) 45–87 (Springer, 2020).

  • Beluch, W. H., Genewein, T., Nurnberger, A. & Kohler, J. M. The power of ensembles for active learning in image classification. In Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition 9368–9377 (IEEE, 2018).

  • León, I., Alonso, E. R., Cabezas, C., Mata, S. & Alonso, J. L. Unveiling the n→π* interactions in dipeptides. Commun Chem 2, 3 (2019).

    Article 

    Google Scholar 

  • Newberry, R. W., Bartlett, G. J., VanVeller, B., Woolfson, D. N. & Raines, R. T. Signatures of n→π* interactions in proteins. Protein Sci. 23, 284–288 (2014).

    Article 

    Google Scholar 

  • Hodges, J. A. & Raines, R. T. Energetics of an n → π* interaction that impacts protein structure. Org Lett 8, 4695–4697 (2006).

    Article 

    Google Scholar 

  • Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001).

    Article 

    Google Scholar 

  • Bartlett, G. J., Choudhary, A., Raines, R. T. & Woolfson, D. N. n→π* interactions in proteins. Nat. Chem. Biol. 6, 615–620 (2010).

    Article 

    Google Scholar 

  • dos Passos Gomes, G. & Alabugin, I. V. Drawing catalytic power from charge separation: stereoelectronic and zwitterionic assistance in the Au(I)-catalyzed Bergman cyclization. J. Am. Chem. Soc. 139, 3406–3416 (2017).

    Article 

    Google Scholar 

  • Gomes, G. D. P., Vil’, V., Terent’ev, A. & Alabugin, I. V. Stereoelectronic source of the anomalous stability of bis-peroxides. Chem. Sci. 6, 6783–6791 (2015).

    Article 

    Google Scholar 

  • Grabowski, S. J. Tetrel bond–σ-hole bond as a preliminary stage of the SN2 reaction. Phys. Chem. Chem. Phys. 16, 1824–1834 (2014).

    Article 

    Google Scholar 

  • Sarazin, Y., Liu, B., Roisnel, T., Maron, L. & Carpentier, J.-F. Discrete, solvent-free alkaline-earth metal cations: metal···fluorine interactions and ROP catalytic activity. J. Am. Chem. Soc. 133, 9069–9087 (2011).

    Article 

    Google Scholar 

  • Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).

    Article 

    Google Scholar 

  • Mardirossian, N. & Head-Gordon, M. ωB97M-V: a combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 144, 214110 (2016).

    Article 

    Google Scholar 

  • Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

    Article 

    Google Scholar 

  • Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 7.0: new vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. https://doi.org/10.1002/jcc.25873 (2019).

  • Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article 

    Google Scholar 

  • Blau, S., Spotte-Smith, E. W. C., Wood, B., Dwaraknath, S. & Persson, K. Accurate, automated density functional theory for complex molecules using on-the-fly error correction. Preprint at chemRxiv https://doi.org/10.26434/chemrxiv.13076030.v1 (2020).

  • Mathew, K. et al. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. Comput. Mater. Sci. 139, 140–152 (2017).

    Article 

    Google Scholar 

  • Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems Vol. 32 (eds. Wallach, H. et al.) 8024–8035 (Curran Associates, Inc., 2019).

  • Falcon, W. A. et al. PyTorch Lightning. GitHub https://github.com/PyTorchLightning/pytorch-lightning (2019).

  • Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. Preprint at https://doi.org/10.48550/arXiv.1903.02428 (2019).

  • Corso, G., Cavalleri, L., Beaini, D., Liò, P. & Veličković, P. Principal neighbourhood aggregation for graph nets. Preprint at https://doi.org/10.48550/arXiv.2004.05718 (2020).

  • Li, G., Müller, M., Thabet, A. & Ghanem, B. DeepGCNs: can GCNs go as deep as CNNs? Preprint at https://doi.org/10.48550/arXiv.1904.03751 (2019).

  • Godwin, J. et al. Simple GNN regularisation for 3D molecular property prediction & beyond. Preprint at https://doi.org/10.48550/arXiv.2106.07971 (2021).

  • Veličković, P. et al. Graph attention networks. Preprint at https://doi.org/10.48550/arXiv.1710.10903 (2017).

  • Cai, C. & Wang, Y. A note on over-smoothing for graph neural networks. Preprint at https://doi.org/10.48550/arXiv.2006.13318 (2020).

  • Boiko, D. et al. Advancing molecular machine learned representations with stereoelectronics-infused molecular graphs. Zenodo https://doi.org/10.5281/zenodo.14393496 (2024).

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-05-23 00:00:00

    Related Articles

    Back to top button