AI

Enhancing deep learning-based field reconstruction with a differentiable learning framework

  • Wang, M. & Zaki, TA estimate a condition in the flowing channel flow from limited notes. J. Fluid mech. 917A9 (2021).

    Mathscinet Google Scholar

  • Malekloo, A., Ozer, E., Alhamaydeh, M. & GIROLAMI, M. Machine Learning and Health Health Overview with textology technology and hight-remarnal Source Perffects. structure. Health screen. 211906-1955 (2022).

    The scientific researcher from Google

  • Thelen, A. Et al. Comprehensive review of digital twins – Part One: Modeling and empowerment technologies. structure. Multidis. optimum. 65354 (2022).

    The scientific researcher from Google

  • Feizi, N., Patel, RV, Kermani, MR & Atashzar, SF Adaptive Wave RecONSTRUTUTURC through BMFLC, a transparent transparency organization on late networks. IEEE Trans. Robot. 382928-2942 (2022).

    The scientific researcher from Google

  • Dong, C., LOY, CC, He, K. & Tang, X. Image Super-Desology using deep fodder networks. IEEE Trans. Anal pattern. Mach. Minds. 38295-307 (2015).

    The scientific researcher from Google

  • Lecun, Y., Bengio, Y. & Hinton, G. Deep Learning. NATURE 521436-444 (2015).

    The scientific researcher from Google

  • BRUNTON, SL, Noack, Br & Koumoutsakos, P. Automated Liquid Mechanics. Annu. Priest mechanical fluid. 52477-508 (2020).

    Mathscinet Google Scholar

  • Fukami, K., Fukagata, K. & Taira, K. RECONDRUCTION SUPER-RESOLUTION for turbulent flows with machine learning. J. Fluid mech. 870106-120 (2019).

    Mathscinet Google Scholar

  • Gümemes, A., Sanmiguel VILA, C. & Discetti, S. Ultra -accurate aggressive networks of randomly classified fields. Nat. Mach. Minds. 41165-1173 (2022).

    The scientific researcher from Google

  • Sha, Y., Xu, Y., Wei, Y. & Wang, C. Predicting List Presse on Hydrovotovovs on the basis of improved compressed sensor technology. physics. Liquid 36013321 (2024).

  • Peng, X., LI, X., Gong, Z., Zhao, X. & YAO, W. A deep educational method based on partition modeling to rebuild the temperature field. int. J. Thermal Sci. 182107802 (2022).

    The scientific researcher from Google

  • Fukami, K., AN, B., Nohmi, M. J. Liquids Engineer. 144121501 (2022).

    The scientific researcher from Google

  • Zhong, Y., Fukami, K., AN, B. & Taira, K. RecONSTRUCTION SENSOR SENSOR OF Fortex-Passing with Automated Learning. theory. account. Dyn Fluid. 37269-287 (2023).

    The scientific researcher from Google

  • Shiri, FM, Perumal, T J. artif. Minds. 6301-360 (2024).

    The scientific researcher from Google

  • He, X., Wang, Y. & LI, J physics. Liquid 34087114 (2022).

  • Ogoke, F., Meidani, K., HASHEMI, A. & Farimani, AB Graph Networks Letows applied to the non -structural flow field data. Mach. Learn: Sci. technique. 2045020 (2021).

    The scientific researcher from Google

  • Bhatti, UA, Tang, H., Wu, G., Marjan, S. & Hussain, A. Deep Learning with Graphic Drawing Networks: Overview and Latest Applications in Mass Intelligence. int. C. split. 20238342104 (2023).

    The scientific researcher from Google

  • Liang, S. And others. Engn: High Production and Energy Power accelerator for large graphic nerve networks. IEEE Trans. account. 701511-1525 (2020).

    The scientific researcher from Google

  • Azzzadnesheli, K. et al. Nervous operators to accelerate scientific simulation and design. Nat. Reverend Viz. 6320-328 (2024).

  • Zhao, x. et al. RECFNO: The method of flowing and flowing variable and heat is a notes scattered through a nervous foulee operator. int. J. Thermal Sci. 195108619 (2024).

    The scientific researcher from Google

  • Fukami, K. et al. Rebuilding the global field from scattered sensors with deep learning with the help of mosaics. Nat. Mach. Minds. 3945-951 (2021).

    The scientific researcher from Google

  • Santos, G and others. Senseiver Development to rebuild the effective field of scattered notes. Nat. Mach. Minds. 51317-1325 (2023).

    The scientific researcher from Google

  • Li, B., LIU, H. & Wang, R. Apply an effective sensor to rebuild the sign based on the luser methods. IEEE Trans. Signal process. 691885-1898 (2021).

    Mathscinet Google Scholar

  • Manuar, K. IEEE Control Syst. magazine 3863-86 (2018).

    Mathscinet Google Scholar

  • Nagata, T. et al. How to choose a data -based sensor based on the near -dimensional data improvement with associated measurement noise. IEEE Trans. Signal process. 705251-5264 (2022).

    Mathscinet Google Scholar

  • Nagata, T., Yamada, K., Nakai, K., Saito, Y. & Nonomura, T IEEE J. 239536-9548 (2023).

  • Koo, B., Son, H., Kim, H., Jo, T Appl. Thermal engineer. 173115153 (2020).

    The scientific researcher from Google

  • Zhang, Z., Peng, C., Wang, G., Ju, Z. & MA, L. Mechanical. split. Signal process. 195110319 (2023).

    The scientific researcher from Google

  • Erichson, NB et al. Shallow nervous networks to rebuild fluid flow with limited sensors. Brook. R. Suk. A 47620200097 (2020).

    Mathscinet Google Scholar

  • Dubois, P., GOMEZ, T., Planckaert, L. & Perret, L. Automated Learning to rebuild fluid flow from limited measurements. J. Comput. physics. 448110733 (2022).

    Mathscinet Google Scholar

  • Marcato, A., O’Malley, D., Viswanathan, H., Guiltinan, E. & Santos, Je Recondruption of Fields from Sparse Sensing: Mostor Sensor Inportible enhances generalization. Preprint at https://arxiv.org/abs/2312.09176 (2023).

  • Marcato, A. Et al. A journey above the destination: the dynamic sensor mode enhances the circular. Mach. Learn: Sci. technique. 5025070 (2024).

    The scientific researcher from Google

  • Padhma, M. A comprehensive introduction to evaluating slope models. Blogathon Data Science (2023).

  • Clark, E., Brunton, SL & Kutz, JN Multi-FIDELILITY SENSOR SELECTION: Greed algorithms to put cheap and costly sensors with cost restrictions. IEEE J. 21600-611 (2020).

    The scientific researcher from Google

  • Li, B., LIU, H. & Wang, R. Data -based sensor to rebuild the effective thermal field. Sci. China technology. Sci. 641981-1994 (2021).

    The scientific researcher from Google

  • Vasay, Mac and others. A your-The evolutionary improvement algorithm based on the correlation between the two stakeholders to collect pollution events and put sensors in water distribution systems. J. Cleaner prod. 319128763 (2021).

    The scientific researcher from Google

  • Colonius, T account. Appl methods. Mechanical. Engineer. 1972131-2146 (2008).

    Mathscinet Google Scholar

  • Fukagata, K., Kasagi, N. & Koumoutsakos, P. Theoretical Prediction to reduce the friction with the turbulent flow by super surfaces. physics. Liquid 18051703 (2006).

  • Zhao, X., Chen, X., Gong, Z., Yao, W. & Zhang, Y. A hybrid method that depends on the appropriate orthogonal decomposition and deep nerve networks to rebuild the thermal field. Syst expert. Appl. 247123137 (2024).

    The scientific researcher from Google

  • Zhang, X., Ji, T., XIE, F., Zheng, H. & Zheng, Y. Unstable Frocification of Instantial Flowing from Sensors scattered by compressed sensing low -arranged modeling. account. Appl methods. Mechanical. Engineer. 393114800 (2022).

    Mathscinet Google Scholar

  • Wu, J., Xiao, D. & Luo, MM Bearning Deeped Deled Order Model to predict a high -dimensional flow of scattered data. physics. Liquid 35103115 (2023).

  • Lu, L., Jin, P., Pang, G., Zhang, Z. & Karniadakis, Gerning Operators via Deeponet based on the theory of global approaching operators. Nat. Mach. Minds. 3218-229 (2021).

    The scientific researcher from Google

  • For me, g. And others. Foreeh, the nervous operator of partial partial differential equations. in Brook. From ICLR 2021 (2021); https://openreview.net/pdf/53c47f849d1cd4d21B865CAF7D74E07A5C42AAA4.PDF

  • Pata, J., Duarte, J. euro. physics. C. C 81381 (2021).

    The scientific researcher from Google

  • LIU, x. et al. DSPO data collection. Zenudo https://zenodo.org/RCords/15259970 (2025).

  • LIU, x. et al. DSPO: DSPO-V1. Zenudo https://doi.org/10.5281/zenodo.15259928 (2025).

  • LIU, x. et al. DSPO codebase. CodeoOCEAN https://doi.org/10.24433/co.4342598.v2 (2025).

  • Don’t miss more hot News like this! AI/" target="_blank" rel="noopener">Click here to discover the latest in AI news!

    2025-07-22 00:00:00

    Related Articles

    Back to top button