AI

Protein–peptide docking with a rational and accurate diffusion generative model

  • Stein, A. & Aloy, P. Contextual specificity in peptide-mediated protein interactions. PLoS ONE 3, e2524 (2008).

    Google Scholar 

  • Babu, M. M., van der Lee, R., de Groot, N. S. & Gsponer, J. Intrinsically disordered proteins: regulation and disease. Curr. Opin. Struct. Biol. 21, 432–440 (2011).

    Google Scholar 

  • Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2015).

    Google Scholar 

  • Petsalaki, E. & Russell, R. B. Peptide-mediated interactions in biological systems: new discoveries and applications. Curr. Opin. Biotechnol. 19, 344–350 (2008).

    Google Scholar 

  • Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).

    Google Scholar 

  • Wang, L. et al. Therapeutic peptides: current applications and future directions. Signal Transduct. Target. Ther. 7, 48 (2022).

    Google Scholar 

  • Kumar, V. B. et al. Peptide self-assembled nanocarriers for cancer drug delivery. J. Phys. Chem. B 127, 1857–1871 (2023).

    Google Scholar 

  • La Manna, S., Di Natale, C., Onesto, V. & Marasco, D. Self-assembling peptides: from design to biomedical applications. Int. J. Mol. Sci. 22, 12662 (2021).

    Google Scholar 

  • Li, L., Chen, X., Yu, J. & Yuan, S. Preliminary clinical application of RGD-containing peptides as PET radiotracers for imaging tumors. Front. Oncol. 12, 837952 (2022).

    Google Scholar 

  • Zhou, Y. et al. Molecularly stimuli-responsive self-assembled peptide nanoparticles for targeted imaging and therapy. ACS Nano 17, 8004–8025 (2023).

    Google Scholar 

  • Sharma, K., Sharma, K. K., Sharma, A. & Jain, R. Peptide-based drug discovery: current status and recent advances. Drug Discov. Today 28, 103464 (2023).

    Google Scholar 

  • Vadevoo, S. M. P. et al. Peptides as multifunctional players in cancer therapy. Exp. Mol. Med. 55, 1099–1109 (2023).

    Google Scholar 

  • Dai, M. Y. et al. High-potency PD-1/PD-L1 degradation induced by peptide-PROTAC in human cancer cells. Cell Death Dis. 13, 924 (2022).

    Google Scholar 

  • Nhàn, N. T. T., Yamada, T. & Yamada, K. H. Peptide-based agents for cancer treatment: current applications and future directions. Int. J. Mol. Sci. 24, 12931 (2023).

    Google Scholar 

  • Lee, A. C., Harris, J. L., Khanna, K. K. & Hong, J. H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci. 20, 2383 (2019).

    Google Scholar 

  • Caporale, A., Adorinni, S., Lamba, D. & Saviano, M. Peptide-protein interactions: from drug design to supramolecular biomaterials. Molecules 26, 1219 (2021).

    Google Scholar 

  • Ciemny, M. et al. Protein-peptide docking: opportunities and challenges. Drug Discov. Today 23, 1530–1537 (2018).

    Google Scholar 

  • Zhou, P., Jin, B., Li, H. & Huang, S. Y. HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Res. 46, W443–W450 (2018).

    Google Scholar 

  • de Vries, S. J., Rey, J., Schindler, C. E. M., Zacharias, M. & Tuffery, P. The pepATTRACT web server for blind, large-scale peptide-protein docking. Nucleic Acids Res. 45, W361–W364 (2017).

    Google Scholar 

  • Alam, N. et al. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLoS Comput. Biol. 13, e1005905 (2017).

    Google Scholar 

  • Zhang, Y. & Sanner, M. F. AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes. Bioinformatics 35, 5121–5127 (2019).

    Google Scholar 

  • Trellet, M., Melquiond, A. S. & Bonvin, A. M. A unified conformational selection and induced fit approach to protein-peptide docking. PLoS ONE 8, e58769 (2013).

    Google Scholar 

  • Xu, X., Yan, C. & Zou, X. MDockPeP: an ab-initio protein-peptide docking server. J. Comput. Chem. 39, 2409–2413 (2018).

    Google Scholar 

  • Zhang, X. et al. Efficient and accurate large library ligand docking with KarmaDock. Nat. Comput. Sci. 3, 789–804 (2023).

    Google Scholar 

  • Weng, G. et al. Comprehensive evaluation of fourteen docking programs on protein–peptide complexes. J. Chem. Theory Comput. 16, 3959–3969 (2020).

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Google Scholar 

  • Tsaban, T. et al. Harnessing protein folding neural networks for peptide-protein docking. Nat. Commun. 13, 176 (2022).

    Google Scholar 

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  • Shanker, S. & Sanner, M. F. Predicting protein–peptide interactions: benchmarking deep learning techniques and a comparison with focused docking. J. Chem. Inf. Model. 63, 3158–3170 (2023).

    Google Scholar 

  • Johansson-Åkhe, I. & Wallner, B. Improving peptide-protein docking with AlphaFold-Multimer using forced sampling. Front. Bioinform. 2, 959160 (2022).

    Google Scholar 

  • Wu, R. et al. High-resolution de novo structure prediction from primary sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500999 (2022).

  • Bret, H., Gao, J., Zea, D. J., Andreani, J. & Guerois, R. From interaction networks to interfaces, scanning intrinsically disordered regions using AlphaFold2. Nat. Commun. 15, 597 (2024).

    Google Scholar 

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  • Ge, J. et al. Deep-learning-based prediction framework for protein-peptide interactions with structure generation pipeline. Cell Rep. Phys. Sci. 5, 101980 (2024).

    Google Scholar 

  • Wang, Z. et al. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 18, 12964–12975 (2016).

    Google Scholar 

  • Mondal, A., Chang, L. & Perez, A. Modelling peptide–protein complexes: docking, simulations and machine learning. QRB Discov. 3, e17 (2022).

    Google Scholar 

  • Ramachandran, G. T. & Sasisekharan, V. Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–437 (1968).

    Google Scholar 

  • Liu, Z., Sun, Q. & Wang, X. PLK1, a potential target for cancer therapy. Transl. Oncol. 10, 22–32 (2017).

    Google Scholar 

  • Śledź, P. et al. From crystal packing to molecular recognition: prediction and discovery of a binding site on the surface of Polo-like kinase 1. Angew. Chem. Int. Ed. 50, 4003–4006 (2011).

    Google Scholar 

  • Lin, T.-Y. et al. Design, synthesis and biological evaluation of phosphopeptides as Polo-like kinase 1 Polo-box domain inhibitors. Bioorg. Med. Chem. 26, 3429–3437 (2018).

    Google Scholar 

  • Elia, A. E. et al. The molecular basis for phosphodependent substrate targeting and regulation of PLKs by the Polo-box domain. Cell 115, 83–95 (2003).

    Google Scholar 

  • Diop, A. et al. SH2 domains: folding, binding and therapeutical approaches. Int. J. Mol. Sci. 23, 15944 (2022).

    Google Scholar 

  • Neduva, V. & Russell, R. B. Peptides mediating interaction networks: new leads at last. Curr. Opin. Biotechnol. 17, 465–471 (2006).

    Google Scholar 

  • Marasco, M. & Carlomagno, T. Specificity and regulation of phosphotyrosine signaling through SH2 domains. J. Struct. Biol. X 4, 100026 (2020).

    Google Scholar 

  • Asmamaw, M. D., Shi, X.-J., Zhang, L.-R. & Liu, H.-M. A comprehensive review of SHP2 and its role in cancer. Cell. Oncol. 45, 729–753 (2022).

    Google Scholar 

  • Lange, A. et al. Classical nuclear localization signals: definition, function, and interaction with importin α. J. Biol. Chem. 282, 5101–5105 (2007).

    Google Scholar 

  • Goswami, R. et al. Nuclear localization signal-tagged systems: Relevant nuclear import principles in the context of current therapeutic design. Chem. Soc. Rev. 53, 204–226 (2024).

    Google Scholar 

  • Joglekar, A. V. & Li, G. T cell antigen discovery. Nat. Methods 18, 873–880 (2021).

    Google Scholar 

  • Shen, Y., Parks, J. M. & Smith, J. C. HLA class I supertype classification based on structural similarity. J. Immunol. 210, 103–114 (2023).

    Google Scholar 

  • Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Google Scholar 

  • Zhang, O. et al. Learning on topological surface and geometric structure for 3D molecular generation. Nat. Comput. Sci. 3, 849–859 (2023).

    Google Scholar 

  • Hampton, J. T. & Liu, W. R. Diversification of phage-displayed peptide libraries with noncanonical amino acid mutagenesis and chemical modification. Chem. Rev. 124, 6051–6077 (2024).

    Google Scholar 

  • Zhu, X., Lopes, P. E., Shim, J. & MacKerell, A. D. Jr Intrinsic energy landscapes of amino acid side-chains. J. Chem. Inf. Model. 52, 1559–1572 (2012).

    Google Scholar 

  • Malathy Sony, S. M., Saraboji, K., Sukumar, N. & Ponnuswamy, M. N. Role of amino acid properties to determine backbone tau(N-Calpha-C’) stretching angle in peptides and proteins. Biophys. Chem. 120, 24–31 (2006).

    Google Scholar 

  • Tien, M. Z., Sydykova, D. K., Meyer, A. G. & Wilke, C. O. PeptideBuilder: a simple Python library to generate model peptides. PeerJ 1, e80 (2013).

    Google Scholar 

  • Xiong, X., Zhou, B. & Wang, Y. G. Graph representation learning for interactive biomolecule systems. Preprint at https://arxiv.org/abs/2304.02656 (2023).

  • Isinkaye, F. O., Folajimi, Y. O. & Ojokoh, B. A. Recommendation systems: principles, methods and evaluation. Egypt. Inform. J. 16, 261–273 (2015).

    Google Scholar 

  • Deng, C. et al. Vector neurons: a general framework for SO(3)-equivariant networks. Proc. IEEE/CVF Int. Conf. Comput. Vis. 2021, 12200–12209 (2021).

    Google Scholar 

  • Thomas, N. et al. Tensor field networks: rotation- and translation-equivariant neural networks for 3D point clouds. Preprint at https://arxiv.org/abs/1802.08219 (2018).

  • Kondor, R., Lin, Z. & Trivedi, S. Clebsch–Gordan nets: a fully Fourier space spherical convolutional neural network. In Advances in Neural Information Processing Systems (eds Bengio, S. et al.) (Curran Associates, 2018).

  • Han, J., Rong, Y., Xu, T. & Huang, W. Geometrically equivariant graph neural networks: a survey. Preprint at https://arxiv.org/abs/2202.07230 (2022).

  • Corso, G., Stärk, H., Jing, B., Barzilay, R. & Jaakkola, T. S. DiffDock: diffusion steps, twists, and turns for molecular docking. In Proc. International Conference on Learning Representations (ICLR, 2023); https://openreview.net/forum?id=kKF8_K-mBbS

  • Nikolayev, D. I. & Savyolov, T. I. Normal distribution on the rotation group SO(3). Texture Stress Microstruct. 29, 201–233 (1997).

    Google Scholar 

  • Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).

    Google Scholar 

  • Jing, B., Corso, G., Chang, J., Barzilay, R. & Jaakkola, T. Torsional diffusion for molecular conformer generation. Adv. Neural Inf. Process. Syst. 35, 24240–24253 (2022).

    Google Scholar 

  • Rose, P. W. et al. The RCSB Protein Data Bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 45, D271–D281 (2017).

  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013).

    Google Scholar 

  • Salomon‐Ferrer, R., Case, D. A. & Walker, R. C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 198–210 (2013).

    Google Scholar 

  • Méndez, R., Leplae, R., De Maria, L. & Wodak, S. J. Assessment of blind predictions of protein–protein interactions: current status of docking methods. Proteins 52, 51–67 (2003).

    Google Scholar 

  • Basu, S. & Wallner, B. DockQ: a quality measure for protein-protein docking models. PLoS ONE 11, e0161879 (2016).

    Google Scholar 

  • Lensink, M. F., Nadzirin, N., Velankar, S. & Wodak, S. J. Modeling protein‐protein, protein‐peptide, and protein‐oligosaccharide complexes: CAPRI 7th edition. Proteins 88, 916–938 (2020).

    Google Scholar 

  • Zhang, Y., Forli, S., Omelchenko, A. & Sanner, M. F. AutoGridFR: improvements on AutoDock affinity maps and associated software tools. J. Comput. Chem. 40, 2882–2886 (2019).

    Google Scholar 

  • Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997).

    Google Scholar 

  • Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins 57, 702–710 (2004).

    Google Scholar 

  • Kabsch, W. & Sander, C. DSSP: definition of secondary structure of proteins given a set of 3D coordinates. Biopolymers 22, 2577–2637 (1983).

    Google Scholar 

  • Shrake, A. & Rupley, J. A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79, 351–371 (1973).

    Google Scholar 

  • Zhao, H. RAPiDock. Zenodo https://doi.org/10.5281/zenodo.14193621 (2024).

  • Zhao, H. huifengzhao/RAPiDock: RAPiDock_v1.1. Zenodo https://doi.org/10.5281/zenodo.14568726 (2024).

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-08-04 00:00:00

    Related Articles

    Back to top button