Protein–peptide docking with a rational and accurate diffusion generative model

Stein, A. & Aloy, P. Contextual specificity in peptide-mediated protein interactions. PLoS ONE 3, e2524 (2008).
Babu, M. M., van der Lee, R., de Groot, N. S. & Gsponer, J. Intrinsically disordered proteins: regulation and disease. Curr. Opin. Struct. Biol. 21, 432–440 (2011).
Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29 (2015).
Petsalaki, E. & Russell, R. B. Peptide-mediated interactions in biological systems: new discoveries and applications. Curr. Opin. Biotechnol. 19, 344–350 (2008).
Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).
Wang, L. et al. Therapeutic peptides: current applications and future directions. Signal Transduct. Target. Ther. 7, 48 (2022).
Kumar, V. B. et al. Peptide self-assembled nanocarriers for cancer drug delivery. J. Phys. Chem. B 127, 1857–1871 (2023).
La Manna, S., Di Natale, C., Onesto, V. & Marasco, D. Self-assembling peptides: from design to biomedical applications. Int. J. Mol. Sci. 22, 12662 (2021).
Li, L., Chen, X., Yu, J. & Yuan, S. Preliminary clinical application of RGD-containing peptides as PET radiotracers for imaging tumors. Front. Oncol. 12, 837952 (2022).
Zhou, Y. et al. Molecularly stimuli-responsive self-assembled peptide nanoparticles for targeted imaging and therapy. ACS Nano 17, 8004–8025 (2023).
Sharma, K., Sharma, K. K., Sharma, A. & Jain, R. Peptide-based drug discovery: current status and recent advances. Drug Discov. Today 28, 103464 (2023).
Vadevoo, S. M. P. et al. Peptides as multifunctional players in cancer therapy. Exp. Mol. Med. 55, 1099–1109 (2023).
Dai, M. Y. et al. High-potency PD-1/PD-L1 degradation induced by peptide-PROTAC in human cancer cells. Cell Death Dis. 13, 924 (2022).
Nhàn, N. T. T., Yamada, T. & Yamada, K. H. Peptide-based agents for cancer treatment: current applications and future directions. Int. J. Mol. Sci. 24, 12931 (2023).
Lee, A. C., Harris, J. L., Khanna, K. K. & Hong, J. H. A comprehensive review on current advances in peptide drug development and design. Int. J. Mol. Sci. 20, 2383 (2019).
Caporale, A., Adorinni, S., Lamba, D. & Saviano, M. Peptide-protein interactions: from drug design to supramolecular biomaterials. Molecules 26, 1219 (2021).
Ciemny, M. et al. Protein-peptide docking: opportunities and challenges. Drug Discov. Today 23, 1530–1537 (2018).
Zhou, P., Jin, B., Li, H. & Huang, S. Y. HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Res. 46, W443–W450 (2018).
de Vries, S. J., Rey, J., Schindler, C. E. M., Zacharias, M. & Tuffery, P. The pepATTRACT web server for blind, large-scale peptide-protein docking. Nucleic Acids Res. 45, W361–W364 (2017).
Alam, N. et al. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLoS Comput. Biol. 13, e1005905 (2017).
Zhang, Y. & Sanner, M. F. AutoDock CrankPep: combining folding and docking to predict protein-peptide complexes. Bioinformatics 35, 5121–5127 (2019).
Trellet, M., Melquiond, A. S. & Bonvin, A. M. A unified conformational selection and induced fit approach to protein-peptide docking. PLoS ONE 8, e58769 (2013).
Xu, X., Yan, C. & Zou, X. MDockPeP: an ab-initio protein-peptide docking server. J. Comput. Chem. 39, 2409–2413 (2018).
Zhang, X. et al. Efficient and accurate large library ligand docking with KarmaDock. Nat. Comput. Sci. 3, 789–804 (2023).
Weng, G. et al. Comprehensive evaluation of fourteen docking programs on protein–peptide complexes. J. Chem. Theory Comput. 16, 3959–3969 (2020).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Tsaban, T. et al. Harnessing protein folding neural networks for peptide-protein docking. Nat. Commun. 13, 176 (2022).
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).
Shanker, S. & Sanner, M. F. Predicting protein–peptide interactions: benchmarking deep learning techniques and a comparison with focused docking. J. Chem. Inf. Model. 63, 3158–3170 (2023).
Johansson-Åkhe, I. & Wallner, B. Improving peptide-protein docking with AlphaFold-Multimer using forced sampling. Front. Bioinform. 2, 959160 (2022).
Wu, R. et al. High-resolution de novo structure prediction from primary sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500999 (2022).
Bret, H., Gao, J., Zea, D. J., Andreani, J. & Guerois, R. From interaction networks to interfaces, scanning intrinsically disordered regions using AlphaFold2. Nat. Commun. 15, 597 (2024).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Ge, J. et al. Deep-learning-based prediction framework for protein-peptide interactions with structure generation pipeline. Cell Rep. Phys. Sci. 5, 101980 (2024).
Wang, Z. et al. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 18, 12964–12975 (2016).
Mondal, A., Chang, L. & Perez, A. Modelling peptide–protein complexes: docking, simulations and machine learning. QRB Discov. 3, e17 (2022).
Ramachandran, G. T. & Sasisekharan, V. Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–437 (1968).
Liu, Z., Sun, Q. & Wang, X. PLK1, a potential target for cancer therapy. Transl. Oncol. 10, 22–32 (2017).
Śledź, P. et al. From crystal packing to molecular recognition: prediction and discovery of a binding site on the surface of Polo-like kinase 1. Angew. Chem. Int. Ed. 50, 4003–4006 (2011).
Lin, T.-Y. et al. Design, synthesis and biological evaluation of phosphopeptides as Polo-like kinase 1 Polo-box domain inhibitors. Bioorg. Med. Chem. 26, 3429–3437 (2018).
Elia, A. E. et al. The molecular basis for phosphodependent substrate targeting and regulation of PLKs by the Polo-box domain. Cell 115, 83–95 (2003).
Diop, A. et al. SH2 domains: folding, binding and therapeutical approaches. Int. J. Mol. Sci. 23, 15944 (2022).
Neduva, V. & Russell, R. B. Peptides mediating interaction networks: new leads at last. Curr. Opin. Biotechnol. 17, 465–471 (2006).
Marasco, M. & Carlomagno, T. Specificity and regulation of phosphotyrosine signaling through SH2 domains. J. Struct. Biol. X 4, 100026 (2020).
Asmamaw, M. D., Shi, X.-J., Zhang, L.-R. & Liu, H.-M. A comprehensive review of SHP2 and its role in cancer. Cell. Oncol. 45, 729–753 (2022).
Lange, A. et al. Classical nuclear localization signals: definition, function, and interaction with importin α. J. Biol. Chem. 282, 5101–5105 (2007).
Goswami, R. et al. Nuclear localization signal-tagged systems: Relevant nuclear import principles in the context of current therapeutic design. Chem. Soc. Rev. 53, 204–226 (2024).
Joglekar, A. V. & Li, G. T cell antigen discovery. Nat. Methods 18, 873–880 (2021).
Shen, Y., Parks, J. M. & Smith, J. C. HLA class I supertype classification based on structural similarity. J. Immunol. 210, 103–114 (2023).
Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).
Zhang, O. et al. Learning on topological surface and geometric structure for 3D molecular generation. Nat. Comput. Sci. 3, 849–859 (2023).
Hampton, J. T. & Liu, W. R. Diversification of phage-displayed peptide libraries with noncanonical amino acid mutagenesis and chemical modification. Chem. Rev. 124, 6051–6077 (2024).
Zhu, X., Lopes, P. E., Shim, J. & MacKerell, A. D. Jr Intrinsic energy landscapes of amino acid side-chains. J. Chem. Inf. Model. 52, 1559–1572 (2012).
Malathy Sony, S. M., Saraboji, K., Sukumar, N. & Ponnuswamy, M. N. Role of amino acid properties to determine backbone tau(N-Calpha-C’) stretching angle in peptides and proteins. Biophys. Chem. 120, 24–31 (2006).
Tien, M. Z., Sydykova, D. K., Meyer, A. G. & Wilke, C. O. PeptideBuilder: a simple Python library to generate model peptides. PeerJ 1, e80 (2013).
Xiong, X., Zhou, B. & Wang, Y. G. Graph representation learning for interactive biomolecule systems. Preprint at https://arxiv.org/abs/2304.02656 (2023).
Isinkaye, F. O., Folajimi, Y. O. & Ojokoh, B. A. Recommendation systems: principles, methods and evaluation. Egypt. Inform. J. 16, 261–273 (2015).
Deng, C. et al. Vector neurons: a general framework for SO(3)-equivariant networks. Proc. IEEE/CVF Int. Conf. Comput. Vis. 2021, 12200–12209 (2021).
Thomas, N. et al. Tensor field networks: rotation- and translation-equivariant neural networks for 3D point clouds. Preprint at https://arxiv.org/abs/1802.08219 (2018).
Kondor, R., Lin, Z. & Trivedi, S. Clebsch–Gordan nets: a fully Fourier space spherical convolutional neural network. In Advances in Neural Information Processing Systems (eds Bengio, S. et al.) (Curran Associates, 2018).
Han, J., Rong, Y., Xu, T. & Huang, W. Geometrically equivariant graph neural networks: a survey. Preprint at https://arxiv.org/abs/2202.07230 (2022).
Corso, G., Stärk, H., Jing, B., Barzilay, R. & Jaakkola, T. S. DiffDock: diffusion steps, twists, and turns for molecular docking. In Proc. International Conference on Learning Representations (ICLR, 2023); https://openreview.net/forum?id=kKF8_K-mBbS
Nikolayev, D. I. & Savyolov, T. I. Normal distribution on the rotation group SO(3). Texture Stress Microstruct. 29, 201–233 (1997).
Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).
Jing, B., Corso, G., Chang, J., Barzilay, R. & Jaakkola, T. Torsional diffusion for molecular conformer generation. Adv. Neural Inf. Process. Syst. 35, 24240–24253 (2022).
Rose, P. W. et al. The RCSB Protein Data Bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 45, D271–D281 (2017).
Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013).
Salomon‐Ferrer, R., Case, D. A. & Walker, R. C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 198–210 (2013).
Méndez, R., Leplae, R., De Maria, L. & Wodak, S. J. Assessment of blind predictions of protein–protein interactions: current status of docking methods. Proteins 52, 51–67 (2003).
Basu, S. & Wallner, B. DockQ: a quality measure for protein-protein docking models. PLoS ONE 11, e0161879 (2016).
Lensink, M. F., Nadzirin, N., Velankar, S. & Wodak, S. J. Modeling protein‐protein, protein‐peptide, and protein‐oligosaccharide complexes: CAPRI 7th edition. Proteins 88, 916–938 (2020).
Zhang, Y., Forli, S., Omelchenko, A. & Sanner, M. F. AutoGridFR: improvements on AutoDock affinity maps and associated software tools. J. Comput. Chem. 40, 2882–2886 (2019).
Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997).
Zhang, Y. & Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins 57, 702–710 (2004).
Kabsch, W. & Sander, C. DSSP: definition of secondary structure of proteins given a set of 3D coordinates. Biopolymers 22, 2577–2637 (1983).
Shrake, A. & Rupley, J. A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79, 351–371 (1973).
Zhao, H. RAPiDock. Zenodo https://doi.org/10.5281/zenodo.14193621 (2024).
Zhao, H. huifengzhao/RAPiDock: RAPiDock_v1.1. Zenodo https://doi.org/10.5281/zenodo.14568726 (2024).
Don’t miss more hot News like this! Click here to discover the latest in AI news!
2025-08-04 00:00:00