AI

Empowering artificial intelligence with homomorphic encryption for secure deep reinforcement learning

  • Huang, Z., Wu, J. & Lv, C. Efficient deep reinforcement learning with imitative expert priors for autonomous driving. IEEE Trans. Neural Netw. Learn. Syst. 33, 3675–3684 (2022).

  • Feng, S. et al. Dense reinforcement learning for safety validation of autonomous vehicles. Nature 615, 620–627 (2023).

    Article 

    Google Scholar 

  • Hachem, E. et al. Reinforcement learning for patient-specific optimal stenting of intracranial aneurysms. Sci. Rep. 13, 7147 (2023).

    Article 

    Google Scholar 

  • Hu, M., Zhang, J., Matkovic, L., Liu, T. & Yang, X. Reinforcement learning in medical image analysis: concepts, applications, challenges, and future directions. J. Appl. Clin. Med. Phys. 24, 13898 (2023).

    Article 

    Google Scholar 

  • Lei, Y. et al. New challenges in reinforcement learning: a survey of security and privacy. Artif. Intell. Rev. 56, 7195–7236 (2023).

    Article 

    Google Scholar 

  • Mo, K. et al. Security and privacy issues in deep reinforcement learning: threats and countermeasures. ACM Comput. Surv. 56, 152 (2024).

    Article 

    Google Scholar 

  • Pan, X. et al. How you act tells a lot: privacy-leaking attack on deep reinforcement learning. In Proc. 18th International Conference on Autonomous Agents and MultiAgent Systems 368–376 (ACM, 2019).

  • Vietri, G., Balle, B., Krishnamurthy, A. & Wu, S. Private reinforcement learning with PAC and regret guarantees. In Proc. International Conference on Machine Learning 9754–9764 (PMLR, 2020).

  • Garcelon, E., Perchet, V., Pike-Burke, C. & Pirotta, M. Local differential privacy for regret minimization in reinforcement learning. Adv. Neural Inf. Process. Syst. 34, 10561–10573 (2021).

    Google Scholar 

  • Chowdhury, S. R. & Zhou, X. Differentially private regret minimization in episodic Markov decision processes. In Proc. AAAI Conference on Artificial Intelligence 36, 6375–6383 (AAAI, 2022).

  • Qiao, D. & Wang, Y.-X. Near-optimal differentially private reinforcement learning. In Proc. International Conference on Artificial Intelligence and Statistics 9914–9940 (PMLR, 2023).

  • Jesu, A., Darvariu, V.-A., Staffolani, A., Montanari, R. & Musolesi, M. Reinforcement learning on encrypted data. Preprint at https://doi.org/10.48550/arXiv.2109.08236 (2021).

  • Knott, B. et al. Crypten: secure multi-party computation meets machine learning. Adv. Neural Inf. Process. Syst. 34, 4961–4973 (2021).

    Google Scholar 

  • Tan, S., Knott, B., Tian, Y. & Wu, D. J. CryptGPU: fast privacy-preserving machine learning on the GPU. In Proc. IEEE Symposium on Security and Privacy (SP) 1021–1038 (IEEE, 2021).

  • Rathee, D., Bhattacharya, A., Gupta, D., Sharma, R. & Song, D. Secure floating-point training. In Proc. 32nd USENIX Security Symposium 6329–6346 (USENIX Association, 2023).

  • Wang, S. et al. Privacy-aware estimation of relatedness in admixed populations. Brief. Bioinform. 23, 473 (2022).

    Article 

    Google Scholar 

  • Li, W. et al. COLLAGENE enables privacy-aware federated and collaborative genomic data analysis. Genome Biol. 24, 204 (2023).

    Article 

    Google Scholar 

  • Nandakumar, K., Ratha, N., Pankanti, S. & Halevi, S. Towards deep neural network training on encrypted data. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 40–48 (IEEE, 2019).

  • Al Badawi, A., Hoang, L., Mun, C. F., Laine, K. & Aung, K. M. M. Privft: private and fast text classification with homomorphic encryption. IEEE Access 8, 226544–226556 (2020).

    Article 

    Google Scholar 

  • Kim, M., Jiang, X., Lauter, K., Ismayilzada, E. & Shams, S. Secure human action recognition by encrypted neural network inference. Nat. Commun. 13, 4799 (2022).

    Article 

    Google Scholar 

  • Nguyen, C. et al. Encrypted data caching and learning framework for robust federated learning-based mobile edge computing. IEEE/ACM Trans. Netw. 32, 2705–2720 (2024).

    Article 

    Google Scholar 

  • Cheon, J. H., Kim, A., Kim, M. & Song, Y. Homomorphic encryption for arithmetic of approximate numbers. In Proc. 23rd International Conference on the Theory and Applications of Cryptology and Information Security 409–437 (Springer, 2017).

  • Cheon, J. H., Han, K., Kim, A., Kim, M. & Song, Y. Bootstrapping for approximate homomorphic encryption. In Proc. 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques 360–384 (Springer, 2018).

  • Cheon, J. H., Han, K., Kim, A., Kim, M. & Song, Y. A full RNS variant of approximate homomorphic encryption. In Proc. 25th International Conference on Selected Areas in Cryptography 347–368 (Springer, 2019).

  • Kim, M., Lee, D., Seo, J. & Song, Y. Accelerating HE operations from key decomposition technique. In Proc. Annual International Cryptology Conference 70–92 (Springer, 2023).

  • Lee, S., Lee, G., Kim, J. W., Shin, J. & Lee, M.-K. HETAL: efficient privacy-preserving transfer learning with homomorphic encryption. In Proc. International Conference on Machine Learning 19010–19035 (PMLR, 2023).

  • Crockett, E. A low-depth homomorphic circuit for logistic regression model training. In Proc. 8th Workshop on Encrypted Computing & Applied Homomorphic Cryptography (ACM, 2020).

  • Jin, C., Ragab, M. & Aung, K. M. M. Secure transfer learning for machine fault diagnosis under different operating conditions. In Proc. International Conference on Provable Security 278–297 (Springer, 2020).

  • Liu, X., Deng, R. H., Choo, K.-K. R. & Yang, Y. Privacy-preserving reinforcement learning design for patient-centric dynamic treatment regimes. IEEE Trans. Emerg. Top. Comput. 9, 456–470 (2019).

    Article 

    Google Scholar 

  • Park, J., Kim, D. S. & Lim, H. Privacy-preserving reinforcement learning using homomorphic encryption in cloud computing infrastructures. IEEE Access 8, 203564–203579 (2020).

    Article 

    Google Scholar 

  • Haarnoja, T. et al. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Proc. 35th International Conference on Machine Learning 1861–1870 (PMLR, 2018).

  • Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In Proc. 3rd International Conference on Learning Representations (ICLR, 2015).

  • Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization algorithms. Preprint at https://doi.org/10.48550/arXiv.1707.06347 (2017).

  • Mnih, V. et al. Asynchronous methods for deep reinforcement learning. In Proc. International Conference on Machine Learning 1928–1937 (PMLR, 2016).

  • Lyubashevsky, V., Peikert, C. & Regev, O. On ideal lattices and learning with errors over rings. In Proc. 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques 1–23 (Springer, 2010).

  • Li, B. & Micciancio, D. On the security of homomorphic encryption on approximate numbers. In Proc. Annual International Conference on the Theory and Applications of Cryptographic Techniques 648–677 (Springer, 2021).

  • Al Badawi, A. et al. OpenFHE: open-source fully homomorphic encryption library. In Proc. 10th Workshop on Encrypted Computing & Applied Homomorphic Cryptography 53–63 (ACM, 2022).

  • Boemer, F., Kim, S., Seifu, G., Souza, F. & Gopal, V. Intel HEXL: accelerating homomorphic encryption with Intel AVX512-IFMA52. In Proc. 9th Workshop on Encrypted Computing & Applied Homomorphic Cryptography 57–62 (ACM, 2021).

  • Albrecht, M. R., Player, R. & Scott, S. On the concrete hardness of learning with errors. J. Math. Cryptol. 9, 169–203 (2015).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Raffin, A. et al. Stable-baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res. 22, 12348–12355 (2021).

    Google Scholar 

  • Keller, M. & Sun, K. Secure quantized training for deep learning. In Proc. International Conference on Machine Learning 10912–10938 (PMLR, 2022).

  • Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

    Article 

    Google Scholar 

  • Roy, S. S., Turan, F., Järvinen, K., Vercauteren, F. & Verbauwhede, I. FPGA-based high-performance parallel architecture for homomorphic computing on encrypted data. In Proc. IEEE International Symposium on High Performance Computer Architecture 387–398 (IEEE, 2019).

  • Turan, F., Roy, S. S. & Verbauwhede, I. HEAWS: an accelerator for homomorphic encryption on the Amazon AWS FPGA. IEEE Trans. Comput. 69, 1185–1196 (2020).

    Google Scholar 

  • Kim, S. et al. BTS: an accelerator for bootstrappable fully homomorphic encryption. In Proc. 49th Annual International Symposium on Computer Architecture 711–725 (ACM, 2022).

  • Geelen, R. et al. BASALISC: Programmable hardware accelerator for BGV fully homomorphic encryption. In IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023, 32–57 (2023).

  • Hao, M. et al. Iron: private inference on transformers. Adv. Neural Inf. Process. Syst. 35, 15718–15731 (2022).

    Google Scholar 

  • Pang, Q., Zhu, J., Möllering, H., Zheng, W. & Schneider, T. BOLT: privacy-preserving, accurate and efficient inference for transformers. In Proc. IEEE Symposium on Security and Privacy 4753–4771 (IEEE, 2024).

  • Lee, E. et al. Low-complexity deep convolutional neural networks on fully homomorphic encryption using multiplexed parallel convolutions. In Proc. International Conference on Machine Learning 12403–12422 (PMLR, 2022).

  • Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.-P. & Hubaux, J.-P. Multiparty homomorphic encryption from ring-learning-with-errors. Proc. Priv. Enhancing Technol. 2021, 291–311 (2021).

    Article 

    Google Scholar 

  • Rakhsha, A., Radanovic, G., Devidze, R., Zhu, X. & Singla, A. Policy teaching via environment poisoning: training-time adversarial attacks against reinforcement learning. In Proc. International Conference on Machine Learning 7974–7984 (PMLR, 2020).

  • Rakhsha, A., Zhang, X., Zhu, X. & Singla, A. Reward poisoning in reinforcement learning: attacks against unknown learners in unknown environments. Preprint at https://doi.org/10.48550/arXiv.2102.08492 (2021).

  • Cascudo, I. et al. Verifiable computation for approximate homomorphic encryption schemes. In Proc. Annual International Cryptology Conference 643–677 (Springer, 2025).

  • Santriaji, M. H., Xue, J., Zhang, Y., Lou, Q. & Solihin, Y. DataSeal: ensuring the verifiability of private computation on encrypted data. In Proc. IEEE Symposium on Security and Privacy 2378–2394 (IEEE, 2025).

  • Gentry, C. A Fully Homomorphic Encryption Scheme (Stanford Univ., 2009).

    Google Scholar 

  • Brakerski, Z., Gentry, C. & Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory 6, 13 (2014).

  • Chillotti, I., Gama, N., Georgieva, M. & Izabachene, M. Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In Proc. 22nd International Conference on the Theory and Application of Cryptology and Information Security 3–33 (Springer, 2016).

  • Kim, A., Song, Y., Kim, M., Lee, K. & Cheon, J. H. Logistic regression model training based on the approximate homomorphic encryption. BMC Med. Genomics 11, 23–31 (2018).

    Article 

    Google Scholar 

  • Ramachandran, P., Zoph, B. & Le, Q. V. Searching for activation functions. In Proc. 6th International Conference on Learning Representations (ICLR, 2018).

  • Misra, D. Mish: A self-regularized non-monotonic activation function. In Proc. 31st British Machine Vision Conference (BMVA, 2020).

  • Adams, R. A. & Fournier, J. J. Sobolev Spaces (Elsevier, 2003).

    MATH 

    Google Scholar 

  • Rimes, E. Sur le calcul effectif des polynômes d’approximation de Tchebycheff. C. R. Acad. Sci. Paris 199, 337–340 (1934).

  • Bossuat, J.-P., Mouchet, C., Troncoso-Pastoriza, J. & Hubaux, J.-P. Efficient bootstrapping for approximate homomorphic encryption with non-sparse keys. In Proc. Annual International Conference on the Theory and Applications of Cryptographic Techniques 587–617 (Springer, 2021).

  • hieunch. hieunch/PPRL: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.17038255 (2025).

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-12-01 00:00:00

    Related Articles

    Back to top button