AI

An interaction-derived graph learning framework for scoring protein–peptide complexes

  • Petsalaki, E. & Russell, R. B. Peptide-mediated interactions in biological systems: new discoveries and applications. Curr. Opin. Biotechnol. 19, 344–350 (2008).

    Article 

    Google Scholar 

  • Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).

    Article 

    Google Scholar 

  • Lei, Y. et al. A deep-learning framework for multi-level peptide–protein interaction prediction. Nat. Commun. 12, 5465 (2021).

    Article 

    Google Scholar 

  • Zhao, Z., Peng, Z. & Yang, J. Improving sequence-based prediction of protein–peptide binding residues by introducing intrinsic disorder and a consensus method. J. Chem. Inf. Model. 58, 1459–1468 (2018).

    Article 

    Google Scholar 

  • Taherzadeh, G., Zhou, Y., Liew, A. W. & Yang, Y. Structure-based prediction of protein–peptide binding regions using Random Forest. Bioinformatics 34, 477–484 (2018).

    Article 

    Google Scholar 

  • Weng, G. et al. Comprehensive evaluation of fourteen docking programs on protein–peptide complexes. J. Chem. Theory Comput. 16, 3959–3969 (2020).

    Article 

    Google Scholar 

  • Neduva, V. et al. Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol. 3, e405 (2005).

    Article 

    Google Scholar 

  • Ciemny, M. et al. Protein–peptide docking: opportunities and challenges. Drug Discov. Today 23, 1530–1537 (2018).

    Article 

    Google Scholar 

  • Zhou, P., Jin, B., Li, H. & Huang, S. Y. HPEPDOCK: a web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Res. 46, W443–W450 (2018).

    Article 

    Google Scholar 

  • Zhou, P. et al. Hierarchical flexible peptide docking by conformer generation and ensemble docking of peptides. J. Chem. Inf. Model. 58, 1292–1302 (2018).

    Article 

    Google Scholar 

  • Zhang, Y. & Sanner, M. F. AutoDock CrankPep: combining folding and docking to predict protein–peptide complexes. Bioinformatics 35, 5121–5127 (2019).

    Article 

    Google Scholar 

  • Schindler, C. E., de Vries, S. J. & Zacharias, M. Fully blind peptide–protein docking with pepATTRACT. Structure 23, 1507–1515 (2015).

    Article 

    Google Scholar 

  • Lee, H., Heo, L., Lee, M. S. & Seok, C. GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res. 43, W431–W435 (2015).

    Article 

    Google Scholar 

  • Yan, C., Xu, X. & Zou, X. Fully blind docking at the atomic level for protein–peptide complex structure prediction. Structure 24, 1842–1853 (2016).

    Article 

    Google Scholar 

  • Kurcinski, M. et al. CABS-dock standalone: a toolbox for flexible protein–peptide docking. Bioinformatics 35, 4170–4172 (2019).

    Article 

    Google Scholar 

  • Raveh, B., London, N. & Schueler-Furman, O. Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78, 2029–2040 (2010).

    Article 

    Google Scholar 

  • London, N., Raveh, B., Cohen, E., Fathi, G. & Schueler-Furman, O. Rosetta FlexPepDock web server—high resolution modeling of peptide–protein interactions. Nucleic Acids Res. 39, W249–W253 (2011).

    Article 

    Google Scholar 

  • Trellet, M., Melquiond, A. S. & Bonvin, A. M. A unified conformational selection and induced fit approach to protein–peptide docking. PLoS ONE 8, e58769 (2013).

    Article 

    Google Scholar 

  • Honorato, R. V. et al. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat. Protoc. 19, 3219–3241 (2024).

    Article 

    Google Scholar 

  • Huang, S. Y. & Zou, X. An iterative knowledge-based scoring function for protein–protein recognition. Proteins 72, 557–579 (2008).

    Article 

    Google Scholar 

  • Feliu, E., Aloy, P. & Oliva, B. On the analysis of protein–protein interactions via knowledge-based potentials for the prediction of protein–protein docking. Protein Sci. 20, 529–541 (2011).

    Article 

    Google Scholar 

  • Liu, S. & Vakser, I. A. DECK: distance and environment-dependent, coarse-grained, knowledge-based potentials for protein–protein docking. BMC Bioinf. 12, 280 (2011).

    Article 

    Google Scholar 

  • Fink, F., Hochrein, J., Wolowski, V., Merkl, R. & Gronwald, W. PROCOS: computational analysis of protein–protein complexes. J. Comput. Chem. 32, 2575–2586 (2011).

    Article 

    Google Scholar 

  • Geng, C. et al. iScore: a novel graph kernel-based function for scoring protein–protein docking models. Bioinformatics 36, 112–121 (2020).

    Article 

    Google Scholar 

  • Jung, Y., Geng, C., Bonvin, A. M., Xue, L. C. & Honavar, V. G. MetaScore: a novel machine-learning-based approach to improve traditional scoring functions for scoring protein–protein docking conformations. Biomolecules 13, 121 (2023).

    Article 

    Google Scholar 

  • Renaud, N. et al. DeepRank: a deep learning framework for data mining 3D protein–protein interfaces. Nat. Commun. 12, 7068 (2021).

    Article 

    Google Scholar 

  • Rèau, M., Renaud, N., Xue, L. C. & Bonvin, A. M. DeepRank-GNN: a graph neural network framework to learn patterns in protein–protein interfaces. Bioinformatics 39, btac759 (2023).

    Article 

    Google Scholar 

  • McFee, M. & Kim, P. M. GDockScore: a graph-based protein–protein docking scoring function. Bioinform. Adv. 3, vbad072 (2023).

    Article 

    Google Scholar 

  • Wang, X., Terashi, G., Christoffer, C. W., Zhu, M. & Kihara, D. Protein docking model evaluation by 3D deep convolutional neural networks. Bioinformatics 36, 2113–2118 (2020).

    Article 

    Google Scholar 

  • Wang, X., Flannery, S. T. & Kihara, D. Protein docking model evaluation by graph neural networks. Front. Mol. Biosci. 8, 647915 (2021).

    Article 

    Google Scholar 

  • Mastropietro, A., Pasculli, G. & Bajorath, J. Learning characteristics of graph neural networks predicting protein–ligand affinities. Nat. Mach. Intell. 5, 1427–1436 (2023).

    Article 

    Google Scholar 

  • Hamilton, W., Ying, Z. & Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 30, 1024–1034 (2017).

    Google Scholar 

  • Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural networks? In Proc. 7th International Conference on Learning Representations https://openreview.net/pdf?id=ryGs6iA5Km (ICLR, 2019).

  • Johansson-åkhe, I., Mirabello, C. & Wallner, B. InterPepRank: assessment of docked peptide conformations by a deep graph network. Front. Bioinform. 1, 763102 (2021).

    Article 

    Google Scholar 

  • Johansson-åkhe, I. & Wallner, B. InterPepScore: a deep learning score for improving the FlexPepDock refinement protocol. Bioinformatics 38, 3209–3215 (2022).

    Article 

    Google Scholar 

  • Linsley, D. et al. Learning long-range spatial dependencies with horizontal gated recurrent units. Adv. Neural Inf. Process Syst. 31, 152–164 (2018).

    Google Scholar 

  • Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) equivariant graph neural networks. In International Conference on Machine Learning 9323–9332 (PMLR, 2021).

  • Fuchs, F., Worrall, D., Fischer, V. & Welling, M. SE(3)-transformers: 3D roto-translation equivariant attention networks. In 34th Conference on Neural Information Processing Systems (NeurIPS 2020) https://papers.neurips.cc/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf (NeurIPS, 2020).

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 

    Google Scholar 

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article 

    Google Scholar 

  • Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article 
    MathSciNet 

    Google Scholar 

  • Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).

    Article 

    Google Scholar 

  • Brandes, N., Ofer, D., Peleg, Y., Rappoport, N. & Linial, M. ProteinBERT: a universal deep-learning model of protein sequence and function. Bioinformatics 38, 2102–2110 (2022).

    Article 

    Google Scholar 

  • Yang, K. K., Fusi, N. & Lu, A. X. Convolutions are competitive with transformers for protein sequence pretraining. Cell Syst. 15, 286–294 (2024).

    Article 

    Google Scholar 

  • Xu, X. & Bonvin, A. M. DeepRank-GNN-esm: a graph neural network for scoring protein–protein models using protein language model. Bioinform. Adv. 4, vbad191 (2024).

    Article 

    Google Scholar 

  • Mariani, V., Biasini, M., Barbato, A. & Schwede, T. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 29, 2722–2728 (2013).

    Article 

    Google Scholar 

  • Zhang, L. et al. ComplexQA: a deep graph learning approach for protein complex structure assessment. Brief. Bioinform. 24, bbad287 (2023).

    Article 

    Google Scholar 

  • Basu, S. & Wallner, B. DockQ: a quality measure for protein–protein docking models. PLoS ONE 11, e0161879 (2016).

    Article 

    Google Scholar 

  • Chen, X., Morehead, A., Liu, J. & Cheng, J. A gated graph transformer for protein complex structure quality assessment and its performance in CASP15. Bioinformatics 39, i308–i317 (2023).

    Article 

    Google Scholar 

  • Yang, Z., Zhong, W., Lv, Q. & Dong, T. Geometric Interaction Graph Neural Network for predicting protein–ligand binding affinities from 3D structures (GIGN). J. Phys. Chem. Lett. 14, 2020–2033 (2023).

    Article 

    Google Scholar 

  • Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article 

    Google Scholar 

  • Bresson, X. & Laurent, T. Residual gated graph ConvNets. Preprint at https://arxiv.org/abs/1711.07553 (2017).

  • Hauser, A. S. & Windshügel, B. LEADS-PEP: a benchmark data set for assessment of peptide docking performance. J. Chem. Inf. Model. 56, 188–200 (2015).

    Article 

    Google Scholar 

  • London, N., Movshovitz-Attias, D. & Schueler-Furman, O. The structural basis of peptide–protein binding strategies. Structure 18, 188–199 (2010).

    Article 

    Google Scholar 

  • Shanker, S. & Sanner, M. F. Predicting protein–peptide interactions: benchmarking deep learning techniques and a comparison with focused docking. J. Chem. Inf. Model. 63, 3158–3170 (2023).

    Article 

    Google Scholar 

  • Lee, J. H., Yin, R., Ofek, G. & Pierce, B. G. Structural features of antibody–peptide recognition. Front. Immunol. 13, 910367 (2022).

    Article 

    Google Scholar 

  • Su, M. et al. Comparative assessment of scoring functions: the CASF-2016 update. J. Chem. Inf. Model. 59, 895–913 (2019).

    Article 

    Google Scholar 

  • Buttenschoen, M., Morris, G. M. & Deane, C. M. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chem. Sci. 15, 3130–3139 (2023).

    Article 

    Google Scholar 

  • Santos, K. B., Guedes, I. A., Karl, A. L. & Dardenne, L. E. Highly flexible ligand docking: benchmarking of the DockThor program on the LEADS-PEP protein–peptide data set. J. Chem. Inf. Model. 60, 667–683 (2020).

    Article 

    Google Scholar 

  • Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. Preprint at https://arxiv.org/abs/1711.05101 (2017).

  • Janin, J. et al. CAPRI: a critical assessment of predicted interactions. Proteins 52, 2–9 (2003).

    Article 

    Google Scholar 

  • Shen, C. et al. Boosting protein–ligand binding pose prediction and virtual screening based on residue-atom distance likelihood potential and graph transformer. J. Med. Chem. 65, 10691–10706 (2022).

    Article 

    Google Scholar 

  • Lin, T. Y., Goyal, P., Girshick, R., He, K. & Dollar, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (2020).

    Article 

    Google Scholar 

  • Wen, Z., He, J., Tao, H. & Huang, S. Y. PepBDB: a comprehensive structural database of biological peptide–protein interactions. Bioinformatics 35, 175–177 (2019).

    Article 

    Google Scholar 

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article 

    Google Scholar 

  • Tao, H., Wang, X. & Huang, S. Y. An interaction-derived graph learning framework for scoring protein–peptide complexes. Zenodo https://doi.org/10.5281/zenodo.17097750 (2025).

  • Tao, H., Wang, X. & Huang, S. Y. GraphPep program. Zenodo https://doi.org/10.5281/zenodo.17099863 (2025).

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-10-23 00:00:00

    Related Articles

    Back to top button