An interaction-derived graph learning framework for scoring protein–peptide complexes
Petsalaki, E. & Russell, R. B. Peptide-mediated interactions in biological systems: new discoveries and applications. Curr. Opin. Biotechnol. 19, 344–350 (2008).
Google Scholar
Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).
Google Scholar
Lei, Y. et al. A deep-learning framework for multi-level peptide–protein interaction prediction. Nat. Commun. 12, 5465 (2021).
Google Scholar
Zhao, Z., Peng, Z. & Yang, J. Improving sequence-based prediction of protein–peptide binding residues by introducing intrinsic disorder and a consensus method. J. Chem. Inf. Model. 58, 1459–1468 (2018).
Google Scholar
Taherzadeh, G., Zhou, Y., Liew, A. W. & Yang, Y. Structure-based prediction of protein–peptide binding regions using Random Forest. Bioinformatics 34, 477–484 (2018).
Google Scholar
Weng, G. et al. Comprehensive evaluation of fourteen docking programs on protein–peptide complexes. J. Chem. Theory Comput. 16, 3959–3969 (2020).
Google Scholar
Neduva, V. et al. Systematic discovery of new recognition peptides mediating protein interaction networks. PLoS Biol. 3, e405 (2005).
Google Scholar
Ciemny, M. et al. Protein–peptide docking: opportunities and challenges. Drug Discov. Today 23, 1530–1537 (2018).
Google Scholar
Zhou, P., Jin, B., Li, H. & Huang, S. Y. HPEPDOCK: a web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Res. 46, W443–W450 (2018).
Google Scholar
Zhou, P. et al. Hierarchical flexible peptide docking by conformer generation and ensemble docking of peptides. J. Chem. Inf. Model. 58, 1292–1302 (2018).
Google Scholar
Zhang, Y. & Sanner, M. F. AutoDock CrankPep: combining folding and docking to predict protein–peptide complexes. Bioinformatics 35, 5121–5127 (2019).
Google Scholar
Schindler, C. E., de Vries, S. J. & Zacharias, M. Fully blind peptide–protein docking with pepATTRACT. Structure 23, 1507–1515 (2015).
Google Scholar
Lee, H., Heo, L., Lee, M. S. & Seok, C. GalaxyPepDock: a protein–peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res. 43, W431–W435 (2015).
Google Scholar
Yan, C., Xu, X. & Zou, X. Fully blind docking at the atomic level for protein–peptide complex structure prediction. Structure 24, 1842–1853 (2016).
Google Scholar
Kurcinski, M. et al. CABS-dock standalone: a toolbox for flexible protein–peptide docking. Bioinformatics 35, 4170–4172 (2019).
Google Scholar
Raveh, B., London, N. & Schueler-Furman, O. Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78, 2029–2040 (2010).
Google Scholar
London, N., Raveh, B., Cohen, E., Fathi, G. & Schueler-Furman, O. Rosetta FlexPepDock web server—high resolution modeling of peptide–protein interactions. Nucleic Acids Res. 39, W249–W253 (2011).
Google Scholar
Trellet, M., Melquiond, A. S. & Bonvin, A. M. A unified conformational selection and induced fit approach to protein–peptide docking. PLoS ONE 8, e58769 (2013).
Google Scholar
Honorato, R. V. et al. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat. Protoc. 19, 3219–3241 (2024).
Google Scholar
Huang, S. Y. & Zou, X. An iterative knowledge-based scoring function for protein–protein recognition. Proteins 72, 557–579 (2008).
Google Scholar
Feliu, E., Aloy, P. & Oliva, B. On the analysis of protein–protein interactions via knowledge-based potentials for the prediction of protein–protein docking. Protein Sci. 20, 529–541 (2011).
Google Scholar
Liu, S. & Vakser, I. A. DECK: distance and environment-dependent, coarse-grained, knowledge-based potentials for protein–protein docking. BMC Bioinf. 12, 280 (2011).
Google Scholar
Fink, F., Hochrein, J., Wolowski, V., Merkl, R. & Gronwald, W. PROCOS: computational analysis of protein–protein complexes. J. Comput. Chem. 32, 2575–2586 (2011).
Google Scholar
Geng, C. et al. iScore: a novel graph kernel-based function for scoring protein–protein docking models. Bioinformatics 36, 112–121 (2020).
Google Scholar
Jung, Y., Geng, C., Bonvin, A. M., Xue, L. C. & Honavar, V. G. MetaScore: a novel machine-learning-based approach to improve traditional scoring functions for scoring protein–protein docking conformations. Biomolecules 13, 121 (2023).
Google Scholar
Renaud, N. et al. DeepRank: a deep learning framework for data mining 3D protein–protein interfaces. Nat. Commun. 12, 7068 (2021).
Google Scholar
Rèau, M., Renaud, N., Xue, L. C. & Bonvin, A. M. DeepRank-GNN: a graph neural network framework to learn patterns in protein–protein interfaces. Bioinformatics 39, btac759 (2023).
Google Scholar
McFee, M. & Kim, P. M. GDockScore: a graph-based protein–protein docking scoring function. Bioinform. Adv. 3, vbad072 (2023).
Google Scholar
Wang, X., Terashi, G., Christoffer, C. W., Zhu, M. & Kihara, D. Protein docking model evaluation by 3D deep convolutional neural networks. Bioinformatics 36, 2113–2118 (2020).
Google Scholar
Wang, X., Flannery, S. T. & Kihara, D. Protein docking model evaluation by graph neural networks. Front. Mol. Biosci. 8, 647915 (2021).
Google Scholar
Mastropietro, A., Pasculli, G. & Bajorath, J. Learning characteristics of graph neural networks predicting protein–ligand affinities. Nat. Mach. Intell. 5, 1427–1436 (2023).
Google Scholar
Hamilton, W., Ying, Z. & Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 30, 1024–1034 (2017).
Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural networks? In Proc. 7th International Conference on Learning Representations https://openreview.net/pdf?id=ryGs6iA5Km (ICLR, 2019).
Johansson-åkhe, I., Mirabello, C. & Wallner, B. InterPepRank: assessment of docked peptide conformations by a deep graph network. Front. Bioinform. 1, 763102 (2021).
Google Scholar
Johansson-åkhe, I. & Wallner, B. InterPepScore: a deep learning score for improving the FlexPepDock refinement protocol. Bioinformatics 38, 3209–3215 (2022).
Google Scholar
Linsley, D. et al. Learning long-range spatial dependencies with horizontal gated recurrent units. Adv. Neural Inf. Process Syst. 31, 152–164 (2018).
Satorras, V. G., Hoogeboom, E. & Welling, M. E(n) equivariant graph neural networks. In International Conference on Machine Learning 9323–9332 (PMLR, 2021).
Fuchs, F., Worrall, D., Fischer, V. & Welling, M. SE(3)-transformers: 3D roto-translation equivariant attention networks. In 34th Conference on Neural Information Processing Systems (NeurIPS 2020) https://papers.neurips.cc/paper/2020/file/15231a7ce4ba789d13b722cc5c955834-Paper.pdf (NeurIPS, 2020).
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Google Scholar
Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2021).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Google Scholar
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).
Google Scholar
Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).
Google Scholar
Brandes, N., Ofer, D., Peleg, Y., Rappoport, N. & Linial, M. ProteinBERT: a universal deep-learning model of protein sequence and function. Bioinformatics 38, 2102–2110 (2022).
Google Scholar
Yang, K. K., Fusi, N. & Lu, A. X. Convolutions are competitive with transformers for protein sequence pretraining. Cell Syst. 15, 286–294 (2024).
Google Scholar
Xu, X. & Bonvin, A. M. DeepRank-GNN-esm: a graph neural network for scoring protein–protein models using protein language model. Bioinform. Adv. 4, vbad191 (2024).
Google Scholar
Mariani, V., Biasini, M., Barbato, A. & Schwede, T. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 29, 2722–2728 (2013).
Google Scholar
Zhang, L. et al. ComplexQA: a deep graph learning approach for protein complex structure assessment. Brief. Bioinform. 24, bbad287 (2023).
Google Scholar
Basu, S. & Wallner, B. DockQ: a quality measure for protein–protein docking models. PLoS ONE 11, e0161879 (2016).
Google Scholar
Chen, X., Morehead, A., Liu, J. & Cheng, J. A gated graph transformer for protein complex structure quality assessment and its performance in CASP15. Bioinformatics 39, i308–i317 (2023).
Google Scholar
Yang, Z., Zhong, W., Lv, Q. & Dong, T. Geometric Interaction Graph Neural Network for predicting protein–ligand binding affinities from 3D structures (GIGN). J. Phys. Chem. Lett. 14, 2020–2033 (2023).
Google Scholar
Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
Google Scholar
Bresson, X. & Laurent, T. Residual gated graph ConvNets. Preprint at https://arxiv.org/abs/1711.07553 (2017).
Hauser, A. S. & Windshügel, B. LEADS-PEP: a benchmark data set for assessment of peptide docking performance. J. Chem. Inf. Model. 56, 188–200 (2015).
Google Scholar
London, N., Movshovitz-Attias, D. & Schueler-Furman, O. The structural basis of peptide–protein binding strategies. Structure 18, 188–199 (2010).
Google Scholar
Shanker, S. & Sanner, M. F. Predicting protein–peptide interactions: benchmarking deep learning techniques and a comparison with focused docking. J. Chem. Inf. Model. 63, 3158–3170 (2023).
Google Scholar
Lee, J. H., Yin, R., Ofek, G. & Pierce, B. G. Structural features of antibody–peptide recognition. Front. Immunol. 13, 910367 (2022).
Google Scholar
Su, M. et al. Comparative assessment of scoring functions: the CASF-2016 update. J. Chem. Inf. Model. 59, 895–913 (2019).
Google Scholar
Buttenschoen, M., Morris, G. M. & Deane, C. M. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chem. Sci. 15, 3130–3139 (2023).
Google Scholar
Santos, K. B., Guedes, I. A., Karl, A. L. & Dardenne, L. E. Highly flexible ligand docking: benchmarking of the DockThor program on the LEADS-PEP protein–peptide data set. J. Chem. Inf. Model. 60, 667–683 (2020).
Google Scholar
Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. Preprint at https://arxiv.org/abs/1711.05101 (2017).
Janin, J. et al. CAPRI: a critical assessment of predicted interactions. Proteins 52, 2–9 (2003).
Google Scholar
Shen, C. et al. Boosting protein–ligand binding pose prediction and virtual screening based on residue-atom distance likelihood potential and graph transformer. J. Med. Chem. 65, 10691–10706 (2022).
Google Scholar
Lin, T. Y., Goyal, P., Girshick, R., He, K. & Dollar, P. Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (2020).
Google Scholar
Wen, Z., He, J., Tao, H. & Huang, S. Y. PepBDB: a comprehensive structural database of biological peptide–protein interactions. Bioinformatics 35, 175–177 (2019).
Google Scholar
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
Google Scholar
Tao, H., Wang, X. & Huang, S. Y. An interaction-derived graph learning framework for scoring protein–peptide complexes. Zenodo https://doi.org/10.5281/zenodo.17097750 (2025).
Tao, H., Wang, X. & Huang, S. Y. GraphPep program. Zenodo https://doi.org/10.5281/zenodo.17099863 (2025).
Don’t miss more hot News like this! Click here to discover the latest in AI news!
2025-10-23 00:00:00



