AI

A multi-joint soft exosuit improves shoulder and elbow motor functions in individuals with spinal cord injury

  • World Health Organization. Spinal cord injury (2024); https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury

  • Nas, K., Yazmalar, L., Şah, V., Aydın, A. & Öneş, K. Rehabilitation of spinal cord injuries. World J. Orthop. 6, 8–16 (2015).

    Article 

    Google Scholar 

  • Ho, J. S., Ko, K. S., law, S. W. & Man, G. C. The effectiveness of robotic-assisted upper limb rehabilitation to improve upper limb function in patients with cervical spinal cord injuries: a systematic literature review. Front. Neurol. 14, 1126755 (2023).

    Article 

    Google Scholar 

  • Charlifue, S. & Gerhart, K. Community integration in spinal cord injury of long duration. NeuroRehabilitation 19, 91–101 (2004).

    Google Scholar 

  • Savic, G., Frankel, H. L., Jamous, M. A., Soni, B. M. & Charlifue, S. Participation restriction and assistance needs in people with spinal cord injuries of more than 40 year duration. Spinal Cord Ser. Cases 4, 28 (2018).

    Article 

    Google Scholar 

  • Morone, G., Pirrera, A., Iannone, A. & Giansanti, D. Development and use of assistive technologies in spinal cord injury: a narrative review of reviews on the evolution, opportunities, and bottlenecks of their integration in the health domain. Healthcare 11, 1646 (2023).

    Article 

    Google Scholar 

  • Fawcett, J. W. et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45, 190–205 (2007).

    Article 

    Google Scholar 

  • Mekki, M., Delgado, A. D., Fry, A., Putrino, D. & Huang, V. Robotic rehabilitation and spinal cord injury: a narrative review. Neurotherapeutics 15, 604–617 (2018).

    Article 

    Google Scholar 

  • Pehlivan, A. U. et al. Design and validation of the RiceWrist-S exoskeleton for robotic rehabilitation after incomplete spinal cord injury. Robotica 32, 1415–1431 (2014).

    Article 

    Google Scholar 

  • Sledziewski, L., Schaaf, R. C. & Mount, J. Use of robotics in spinal cord injury: a case report. Am. J. Occup. Ther. 66, 51–58 (2012).

    Article 

    Google Scholar 

  • Vanmulken, D. M. M., Spooren, A. I. F., Bongers, H. M. H. & Seelen, H. M. Robot-assisted task-oriented upper extremity skill training in cervical spinal cord injury: a feasibility study. Spinal Cord 53, 547–551 (2015).

    Article 

    Google Scholar 

  • Catalán, J. M. et al. Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs). J. Neuroeng. Rehabil. 20, 61 (2023).

    Article 

    Google Scholar 

  • Chang, E. Y., McPherson, A. I. W., Adolf, R. C., Gloumakov, Y. & Stuart, H. S. Modulating wrist-hand kinematics in motorized-assisted grasping with C5-6 spinal cord injury. IEEE Trans. Med. Robot. Bionics 6, 189–201 (2024).

    Article 

    Google Scholar 

  • Francisco, G. E. et al. Robot-assisted training of arm and hand movement shows functional improvements for incomplete cervical spinal cord injury. Am. J. Phys. Med. Rehabil. 96, S171 (2017).

    Article 

    Google Scholar 

  • Zariffa, J. et al. Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord 50, 220–226 (2012).

    Article 

    Google Scholar 

  • Soekadar, S. R. et al. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci. Robot. 1, eaag3296 (2016).

    Article 

    Google Scholar 

  • Cortes, M. et al. Improved motor performance in chronic spinal cord injury following upper-limb robotic training. NeuroRehabilitation 33, 57–65 (2013).

    Google Scholar 

  • Kim, J. et al. Clinical efficacy of upper limb robotic therapy in people with tetraplegia: a pilot randomized controlled trial. Spinal Cord 57, 49–57 (2019).

    Article 

    Google Scholar 

  • Sørensen, L. & Månum, G. A single-subject study of robotic upper limb training in the subacute phase for four persons with cervical spinal cord injury. Spinal Cord Ser. Cases 5, 29 (2019).

    Article 

    Google Scholar 

  • Proietti, T., Ambrosini, E., Pedrocchi, A. & Micera, S. Wearable robotics for impaired upper-limb assistance and rehabilitation: state of the art and future perspectives. IEEE Access 10, 106117–106134 (2022).

    Article 

    Google Scholar 

  • Gandolla, M., Antonietti, A., Longatelli, V. & Pedrocchi, A. The effectiveness of wearable upper limb assistive devices in degenerative neuromuscular diseases: a systematic review and meta-analysis. Front. Bioeng. Biotechnol. 7, 450 (2020).

    Article 

    Google Scholar 

  • Xiloyannis, M. et al. Soft robotic suits: state of the art, core technologies, and open challenges. IEEE Trans. Robot. 38, 1343–1362 (2021).

    Article 

    Google Scholar 

  • Cardoso, L. R. L., Bochkezanian, V., Forner-Cordero, A., Melendez-Calderon, A. & Bo, A. P. L. Soft robotics and functional electrical stimulation advances for restoring hand function in people with SCI: a narrative review, clinical guidelines and future directions. J. Neuroeng. Rehabil. 19, 66 (2022).

    Article 

    Google Scholar 

  • Cappello, L. et al. Assisting hand function after spinal cord injury with a fabric-based soft robotic glove. J. Neuroeng. Rehabil. 15, 59 (2018).

    Article 

    Google Scholar 

  • Correia, C. et al. Improving grasp function after spinal cord injury with a soft robotic glove. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 1407–1415 (2020).

    Article 

    Google Scholar 

  • Yoo, H.-J., Lee, S., Kim, J., Park, C. & Lee, B. Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury. J. Neuroeng. Rehabil. 16, 162 (2019).

    Article 

    Google Scholar 

  • Dittli, J. et al. Mixed methods usability evaluation of an assistive wearable robotic hand orthosis for people with spinal cord injury. J. Neuroeng. Rehabil. 20, 162 (2023).

    Article 

    Google Scholar 

  • Osuagwu, B. A. C. et al. Home-based rehabilitation using a soft robotic hand glove device leads to improvement in hand function in people with chronic spinal cord injury: a pilot study. J. Neuroeng. Rehabil. 17, 40 (2020).

    Article 

    Google Scholar 

  • Lotti, N. et al. Soft robotics to enhance upper limb endurance in individuals with multiple sclerosis. Soft Robot. 11, 338–346 (2024).

    Article 

    Google Scholar 

  • Proietti, T. et al. Restoring arm function with a soft robotic wearable for individuals with amyotrophic lateral sclerosis. Sci. Transl. Med. 15, eadd1504 (2023).

    Article 

    Google Scholar 

  • Georgarakis, A.-M., Xiloyannis, M., Wolf, P. & Riener, R. A textile exomuscle that assists the shoulder during functional movements for everyday life. Nat. Mach. Intell. 4, 574–582 (2022).

    Article 

    Google Scholar 

  • Nam, C. Y. et al. An exoneuromusculoskeleton for self-help upper limb rehabilitation after stroke. Soft Robot. 9, 14–35 (2020).

    Article 

    Google Scholar 

  • Proietti, T. et al. Combining soft robotics and telerehabilitation for improving motor function after stroke. Wearable Technol. 5, e1 (2024).

    Article 

    Google Scholar 

  • Park, S. J. et al. Soft exosuit based on fabric muscle for upper limb assistance. IEEE/ASME Trans. Mechatron. 28, 26–37 (2022).

    Article 

    Google Scholar 

  • Shi, Y. et al. Human-in-the-loop modeling and control of an upper limb exosuit with tendon-sheath actuation. IEEE Robot. Autom. Lett. 9, 5919–5926 (2024).

    Article 

    Google Scholar 

  • Noronha, B. et al. Soft, lightweight wearable robots to support the upper limb in activities of daily living: a feasibility study on chronic stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 1401–1411 (2022).

    Article 

    Google Scholar 

  • Simpson, C. et al. Upper extremity exomuscle for shoulder abduction support. IEEE Trans. Med. Robot. Bionics 2, 474–484 (2020).

    Article 

    Google Scholar 

  • Campioni, L. et al. Preliminary evaluation of a soft wearable robot for shoulder movement assistance. IEEE Trans. Med. Robot. Bionics 7, 315–324 (2025).

    Article 

    Google Scholar 

  • Oliveira, D. S. et al. A direct spinal cord-computer interface enables the control of the paralysed hand in spinal cord injury. Brain 147, 3583–3595 (2024).

    Article 

    Google Scholar 

  • Lo, C., Tran, Y., Anderson, K., Craig, A. & Middleton, J. Functional priorities in persons with spinal cord injury: using discrete choice experiments to determine preferences. J. Neurotrauma 33, 1958–1968 (2016).

    Article 

    Google Scholar 

  • Proietti, T. et al. Sensing and control of a multi-joint soft wearable robot for upper-limb assistance and rehabilitation. IEEE Robot. Autom. Lett. 6, 2381–2388 (2021).

    Article 

    Google Scholar 

  • Gerez, L., Micera, S., Nuckols, R. & Proietti, T. Assessment of wearable robotics performance in patients with neurological conditions. Curr. Opin. Neurol. 37, 645–654 (2024).

    Article 

    Google Scholar 

  • Zhou, Y. M. et al. A portable inflatable soft wearable robot to assist the shoulder during industrial work. Sci. Robot. 9, eadi2377 (2024).

    Article 

    Google Scholar 

  • Atkins, M. S. et al. Mobile arm supports: evidence-based benefits and criteria for use. J. Spinal Cord Med. 31, 388–393 (2008).

    Article 

    Google Scholar 

  • Kloosterman, M. G. M., Snoek, G. J., Kouwenhoven, M., Nene, A. V. & Jannink, M. J. A. Influence of gravity compensation on kinematics and muscle activation patterns during reach and retrieval in subjects with cervical spinal cord injury: an explorative study. J. Rehabil. Res. Dev. 47, 617 (2010).

    Article 

    Google Scholar 

  • Prange, G. B. et al. Increased range of motion and decreased muscle activity during maximal reach with gravity compensation in stroke patients. In Proc. 2007 IEEE 10th International Conference on Rehabilitation Robotics 467–471 (IEEE, 2007).

  • Krabben, T. et al. Influence of gravity compensation training on synergistic movement patterns of the upper extremity after stroke, a pilot study. J. Neuroeng. Rehabil. 9, 44 (2012).

    Article 

    Google Scholar 

  • Feng, M., Yang, D., Ren, L., Wei, G. & Gu, G. X-crossing pneumatic artificial muscles. Sci. Adv. 9, eadi7133 (2023).

    Article 

    Google Scholar 

  • Recommendations for sensor locations on individual muscles; http://seniam.org/sensor_location.htm

  • Bangor, A., Kortum, P. T. & Miller, J. T. An empirical evaluation of the system usability scale. Int. J. Hum. Comput. Interact. 24, 574–574 (2008).

    Article 

    Google Scholar 

  • Don’t miss more hot News like this! AI/" target="_blank" rel="noopener">Click here to discover the latest in AI news!

    2025-09-22 00:00:00

    Related Articles

    Back to top button