AI

Deep generative classification of blood cell morphology

  • Bain, B. J. Blood Cells: A Practical Guide (John Wiley & Sons, 2021).

  • Kratz, A. et al. Digital morphology analyzers in hematology: ICSH review and recommendations. Int. J. Lab. Hematol. 41, 437–447 (2019).

    Article 

    Google Scholar 

  • Buttarello, M. & Plebani, M. Automated blood cell counts: state of the art. Am. J. Clin. Pathol. 130, 104–116 (2008).

    Article 

    Google Scholar 

  • van de Geijn, G.-J. et al. Leukoflow: multiparameter extended white blood cell differentiation for routine analysis by flow cytometry. Cytometry A 79A, 694–706 (2011).

    Article 

    Google Scholar 

  • Metter, G. E. et al. Morphological subclassification of follicular lymphoma: variability of diagnoses among hematopathologists, a collaborative study between the repository center and pathology panel for lymphoma clinical studies. J. Clin. Oncol. 3, 25–38 (1985).

    Article 

    Google Scholar 

  • Claro, M. et al. Convolution neural network models for acute leukemia diagnosis. In Proc. IEEE International Conference on Systems, Signals and Image Processing (IWSSIP) (eds Paiva, A. C. et al.) 63–68 (IEEE, 2020).

  • Pansombut, T., Wikaisuksakul, S., Khongkraphan, K. & Phon-On, A. Convolutional neural networks for recognition of lymphoblast cell images. Comput. Intell. Neurosci. 2019, 7519603 (2019).

    Article 

    Google Scholar 

  • Hehr, M. et al. Explainable AI identifies diagnostic cells of genetic AML subtypes. PLOS Digit. Health 2, e0000187 (2023).

    Article 

    Google Scholar 

  • Routt, A. H., Yang, N., Piety, N. Z., Lu, M. & Shevkoplyas, S. S. Deep ensemble learning enables highly accurate classification of stored red blood cell morphology. Sci. Rep. 13, 3152 (2023).

    Article 

    Google Scholar 

  • Doan, M. et al. Objective assessment of stored blood quality by deep learning. Proc. Natl Acad. Sci. USA 117, 21381–21390 (2020).

    Article 

    Google Scholar 

  • Matek, C., Krappe, S., Münzenmayer, C., Haferlach, T. & Marr, C. Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Blood 138, 1917–1927 (2021).

    Article 

    Google Scholar 

  • Yoon, J. S., Oh, K., Shin, Y., Mazurowski, M. A. & Suk, H.-I. Domain generalization for medical image analysis: a review. Proc. IEEE 112, 1583–1609 (2024).

    Article 

    Google Scholar 

  • Koh, P. W. et al. Wilds: a benchmark of in-the-wild distribution shifts. In Proc. 38th International Conference on Machine Learning (eds Meila, M. & Zhang, T.) 5637–5664 (PMLR, 2021).

  • Holzinger, A., Langs, G., Denk, H., Zatloukal, K. & Müller, H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9, e1312 (2019).

    Article 

    Google Scholar 

  • Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    Article 

    Google Scholar 

  • Kazerouni, A. et al. Diffusion models in medical imaging: a comprehensive survey. Med. Image Anal. 88, 102846 (2023).

    Article 

    Google Scholar 

  • Begoli, E., Bhattacharya, T. & Kusnezov, D. The need for uncertainty quantification in machine-assisted medical decision making. Nat. Mach. Intell. 1, 20–23 (2019).

    Article 

    Google Scholar 

  • Asghar, R., Kumar, S., Shaukat, A. & Hynds, P. Classification of white blood cells (leucocytes) from blood smear imagery using machine and deep learning models: a global scoping review. PLoS ONE 19, e0292026 (2024).

    Article 

    Google Scholar 

  • Kumar, R., Kumbharkar, P., Vanam, S. & Sharma, S. Medical images classification using deep learning: a survey. Multimed. Tools Appl. 83, 19683–19728 (2024).

    Article 

    Google Scholar 

  • Li, A. C., Kumar, A. & Pathak, D. Generative classifiers avoid shortcut solutions. In Proc. ICML 2024 Workshop on Structured Probabilistic Inference & Generative Modeling (ICML, 2024).

  • Chen, H. et al. Robust classification via a single diffusion model. In Proc. 41st International Conference on Machine Learning (eds Salakhutdinov, R. et al.) 6643–6665 (PMLR, 2024).

  • Clark, K. & Jaini, P. Text-to-image diffusion models are zero shot classifiers. Adv. Neural Inf. Process. Syst. 36, 58921–58937 (2024).

  • Li, A. C., Prabhudesai, M., Duggal, S., Brown, E. & Pathak, D. Your diffusion model is secretly a zero-shot classifier. In Proc. IEEE/CVF International Conference on Computer Vision 2206–2217 (IEEE, 2023).

  • Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-resolution image synthesis with latent diffusion models. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (eds Dana, K. et al.) 10684–10695 (IEEE, 2022).

  • Kouzehkanan, Z. M. et al. A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm. Sci. Rep. 12, 1123 (2022).

    Article 

    Google Scholar 

  • Acevedo, A. et al. A dataset of microscopic peripheral blood cell images for development of automatic recognition systems. Data Br. 30, 105474 (2020).

    Article 

    Google Scholar 

  • Bodzas, A., Kodytek, P. & Zidek, J. A high-resolution large-scale dataset of pathological and normal white blood cells. Sci. Data 10, 466 (2023).

    Article 

    Google Scholar 

  • Kendall, A. & Gal, Y. What uncertainties do we need in Bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst. 30, 2871 (2017).

  • Ovadia, Y. et al. Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. Adv. Neural Inf. Process. Syst. 32, 13969–13980 (2019).

  • Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. In Proc. IEEE International Conference on Computer Vision (eds Cucchiara, R. et al.) 618–626 (IEEE, 2017).

  • Ribeiro, M. T., Singh, S. & Guestrin, C. ‘Why should I trust you?’ Explaining the predictions of any classifier. In Proc. 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (eds Krishnapuram, B. et al.) 1135–1144 (ACM, 2016).

  • Deng, J. et al. ImageNet: a large-scale hierarchical image database. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (eds Essa, I. et al.) 248–255 (IEEE, 2009).

  • Shanbhag, A. S. et al. Just leaf it: accelerating diffusion classifiers with hierarchical class pruning. Preprint at https://arxiv.org/abs/2411.12073 (2024).

  • Pombo, G. et al. Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models. Med. Image Anal. 84, 102723 (2023).

    Article 

    Google Scholar 

  • Paulson, E. A sequential procedure for selecting the population with the largest mean from k normal populations. Ann. Math. Stat. 35, 174–180 (1964).

  • Even-Dar, E., Mannor, S. & Mansour, Y. PAC bounds for multi-armed bandit and Markov decision processes. In Proc. 15th Annual Conference on Computational Learning Theory (COLT 2002) (eds Kivinen, J. & Sloan, R. H.) 255–270 (Springer, 2002).

  • Firat, H. Ü. Classification of microscopic peripheral blood cell images using multibranch lightweight CNN-based model. Neural Comput. Appl. 36, 1599–1620 (2024).

    Article 

    Google Scholar 

  • Abou Ali, M., Dornaika, F. & Arganda-Carreras, I. Blood cell revolution: unveiling 11 distinct types with ‘naturalize’ augmentation. Algorithms 16, 562 (2023).

    Article 

    Google Scholar 

  • Kalweit, G. et al. Unsupervised feature extraction from a foundation model zoo for cell similarity search in oncological microscopy across devices. In Proc. ICML 2024 Workshop on Foundation Models in the Wild (ICML, 2024).

  • Garcia Llagostera, A. Developing a Scalable and Privacy-Preserving Deep Learning Model for the Classification of Peripheral Blood Cell Images. Master’s thesis, Univ. Oberta de Catalunya (2024).

  • Zhang, R. et al. RCMNet: a deep learning model assists CAR-T therapy for leukemia. Comput. Biol. Med. 150, 106084 (2022).

  • Long, F., Peng, J.-J., Song, W., Xia, X. & Sang, J. BloodCaps: a capsule network based model for the multiclassification of human peripheral blood cells. Comput. Methods Programs Biomed. 202, 105972 (2021).

    Article 

    Google Scholar 

  • Rubin, R., Anzar, S. M., Panthakkan, A. & Mansoor, W. Transforming healthcare: Raabin white blood cell classification with deep vision transformer. In Proc. 6th International Conference on Signal Processing and Information Security (ICSPIS 2023) (eds Beheshti, A. & Mukhtar, H.) 212–217 (IEEE, 2023).

  • Gescheider, G. A. Psychophysics: The Fundamentals 3rd edn (Psychology Press, 1997).

  • Schütt, H. H., Harmeling, S., Macke, J. H. & Wichmann, F. A. Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data. Vision Res. 122, 105–123 (2016).

    Article 

    Google Scholar 

  • Mah, Y.-H., Jager, R., Kennard, C., Husain, M. & Nachev, P. A new method for automated high-dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital lobe. Cortex 56, 51–63 (2014).

    Article 

    Google Scholar 

  • Rieck, K. & Laskov, P. Detecting unknown network attacks using language models. In Proc. 3rd International Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA 2006) (eds Büschkes, R. & Laskov, P.) 74–90 (Springer, 2006).

  • Rezatofighi, S. H. & Soltanian-Zadeh, H. Automatic recognition of five types of white blood cells in peripheral blood. Comput. Med. Imaging Graph. 35, 333–343 (2011).

    Article 

    Google Scholar 

  • Li, C. & Liu, Y. Improved generalization of white blood cell classification by learnable illumination intensity invariant layer. IEEE Signal Process. Lett. 31, 176–180 (2024).

    Article 

    Google Scholar 

  • Tsutsui, S., Su, Z. & Wen, B. Benchmarking white blood cell classification under domain shift. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023) (eds Kotropoulos, C. & Narayanan, S.) 1–5 (IEEE, 2023).

  • Deltadahl, S. et al. CambridgeCIA/CytoDiffusion. Zenodo https://doi.org/10.5281/zenodo.14825813 (2025).

  • Tavakoli, S., Ghaffari, A., Kouzehkanan, Z. M. & Hosseini, R. New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images. Sci. Rep. 11, 19428 (2021).

    Article 

    Google Scholar 

  • Chen, H. et al. Accurate classification of white blood cells by coupling pre-trained ResNet and DenseNet with SCAM mechanism. BMC Bioinform. 23, 282 (2022).

    Article 

    Google Scholar 

  • Jiang, L., Tang, C. & Zhou, H. White blood cell classification via a discriminative region detection assisted feature aggregation network. Biomed. Opt. Express 13, 5246–5260 (2022).

    Article 

    Google Scholar 

  • Rivas-Posada, E. & Chacon-Murguia, M. I. Automatic base-model selection for white blood cell image classification using meta-learning. Comput. Biol. Med. 163, 107200 (2023).

    Article 

    Google Scholar 

  • Ucar, F. Deep learning approach to cell classification in human peripheral blood. In Proc. 5th International Conference on Computer Science and Engineering (UBMK 2020) (ed. Adali, E.) 383–387 (IEEE, 2020).

  • Rastogi, P., Khanna, K. & Singh, V. LeuFeaTx: deep learning-based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear. Comput. Biol. Med. 142, 105236 (2022).

  • Tummala, S. & Suresh, A. K. Few-shot learning using explainable Siamese twin network for the automated classification of blood cells. Med. Biol. Eng. Comput. 61, 1549–1563 (2023).

    Article 

    Google Scholar 

  • Chen, M., Mei, S., Fan, J. & Wang, M. An overview of diffusion models: applications, guided generation, statistical rates and optimization. Preprint at https://arxiv.org/abs/2404.07771 (2024).

  • Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).

    Google Scholar 

  • Song, Y. et al. Score-based generative modeling through stochastic differential equations. In Proc. International Conference on Learning Representations (ICLR 2021) (ICLR, 2021).

  • Song, Y. & Ermon, S. Improved techniques for training score-based generative models. Adv. Neural Inf. Process. Syst. 33, 12438–12448 (2020).

  • Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N. & Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In Proc. International Conference on Machine Learning (eds Bach, F. & Blei, D.) 2256–2265 (PMLR, 2015).

  • Saharia, C. et al. Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural Inf. Process. Syst. 35, 36479–36494 (2022).

    Google Scholar 

  • Saharia, C. et al. Palette: image-to-image diffusion models. In Proc. ACM SIGGRAPH 2022 Conference Proceedings (ed. Mitra, N. J.) 1–10 (ACM, 2022).

  • Lugmayr, A. et al. RePaint: inpainting using denoising diffusion probabilistic models. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (eds Dana, K. et al.) 11461–11471 (IEEE, 2022).

  • Saharia, C. et al. Image super-resolution via iterative refinement. IEEE Trans. Pattern Anal. Mach. Intell. 45, 4713–4726 (2022).

    Google Scholar 

  • van den Oord, A., Vinyals, O. & Kavukcuoglu, K. Neural discrete representation learning. Adv. Neural Inf. Process. Syst. 30 (2017).

  • Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In Proc. 2nd International Conference on Learning Representations (ICLR 2014) (ICLR, 2014).

  • Hang, T. et al. Efficient diffusion training via Min-SNR weighting strategy. In Proc. IEEE/CVF International Conference on Computer Vision 7441–7451 (IEEE, 2023).

  • Zhang, H., Cissé, M., Dauphin, Y. N. & Lopez-Paz, D. Mixup: beyond empirical risk minimization. In Proc. International Conference on Learning Representations (ICLR 2018) (ICLR, 2018).

  • Cubuk, E. D., Zoph, B., Shlens, J. & Le, Q. V. RandAugment: practical automated data augmentation with a reduced search space. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (eds Dekel, T. & Hassner, T.) 702–703 (IEEE, 2020).

  • Tan, M. & Le, Q. EfficientNetV2: smaller models and faster training. In Proc. International Conference on Machine Learning (eds Meila, M. & Zhang, T.) 10096–10106 (PMLR, 2021).

  • Dosovitskiy, A. et al. An image is worth 16 × 16 words: transformers for image recognition at scale. In Proc. International Conference on Learning Representations (ICLR, 2021).

  • Matek, C., Schwarz, S., Spiekermann, K. & Marr, C. Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nat. Mach. Intell. 1, 538–544 (2019).

    Article 

    Google Scholar 

  • Font, P. et al. Inter-observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification. Ann. Hematol. 92, 19–24 (2013).

    Article 

    Google Scholar 

  • Font, P. et al. Interobserver variance in myelodysplastic syndromes with less than 5% bone marrow blasts: unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2% blasts. Ann. Hematol. 94, 565–573 (2015).

    Article 

    Google Scholar 

  • Ho, J. & Salimans, T. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications https://openreview.net/pdf?id=qw8AKxfYbI (NeurIPS, 2022).

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-11-19 00:00:00

    Related Articles

    Back to top button