Deep lead optimization enveloped in protein pocket and its application in designing potent and selective ligands targeting LTK protein
Grabley, S. & Thiericke, R. Drug Discovery from Nature (Springer Science & Business Media, 1998).
Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).
Google Scholar
Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).
Google Scholar
Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702.e613 (2020).
Google Scholar
Godinez, W. J. et al. Design of potent antimalarials with generative chemistry. Nat. Mach. Intell. 4, 180–186 (2022).
Google Scholar
Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).
Google Scholar
Li, Y. et al. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nat.Com. 13, 6891 (2022).
Google Scholar
Aronson, J. K. & Green, A. R. Me-too pharmaceutical products: History, definitions, examples, and relevance to drug shortages and essential medicines lists. Br. J. Clin. Pharmacol. 86, 2114–2122 (2020).
Google Scholar
Zhang, O. et al. ResGen is a pocket-aware 3D molecular generation model based on parallel multiscale modelling. Nat. Mach. Intell. 5, 1020–1030 (2023).
Google Scholar
Lin, H. et al. DiffBP: generative diffusion of 3D molecules for target protein binding. Chem. Sci. 16, 1417–1431 (2025).
Google Scholar
Schneuing, A. et al. Structure-based drug design with equivariant diffusion models. Nat. Comput. Sci. 4, 899–909 (2024).
Google Scholar
Peng, X. et al. Pocket2mol: efficient molecular sampling based on 3d protein pockets. In Proc. 39th International Conference on Machine Learning 17644–17655 (PMLR, 2022).
Davidson, M. et al. Comparison of one-year efficacy and safety of atorvastatin versus lovastatin in primary hypercholesterolemia. Am. J. Cardiol. 79, 1475–1481 (1997).
Google Scholar
Becnel Boyd, L. et al. Relationships among ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs for fluoroquinolone-resistant escherichia coli clinical isolates. Antimicrob. Agents Chemother. 53, 229–234 (2009).
Google Scholar
Bethke, E. et al. From type I to type II: design, synthesis, and characterization of potent pyrazin-2-ones as DFG-out inhibitors of PDGFRβ. ChemMedChem 11, 2664–2674 (2016).
Google Scholar
Green, H., Koes, D. R. & Durrant, J. D. DeepFrag: a deep convolutional neural network for fragment-based lead optimization. Chem. Sci. 12, 8036–8047 (2021).
Google Scholar
Igashov, I. et al. Equivariant 3D-conditional diffusion model for molecular linker design. Nat. Mach. Intell. 6, 417–427 (2024).
Google Scholar
Jin, J. et al. FFLOM: a flow-based autoregressive model for fragment-to-lead optimization. J. Med. Chem. 66, 10808–10823 (2023).
Google Scholar
Hu, C. et al. ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks. J. Cheminform. 15, 91 (2023).
Google Scholar
Loeffler, H. H. et al. Reinvent 4: modern AI–driven generative molecule design. J. Cheminform. 16, 20 (2024).
Google Scholar
Liu, X., Ye, K., van Vlijmen, H. W. T., Ijzerman, A. P. & van Westen, G. J. P. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning. J. Cheminf. 15, 24 (2023).
Google Scholar
Neves, M. A. C., Totrov, M. & Abagyan, R. Docking and scoring with ICM: the benchmarking results and strategies for improvement. J. Comput. Aided Mol. Des. 26, 675–686 (2012).
Google Scholar
Adeshina, Y. O., Deeds, E. J. & Karanicolas, J. Machine learning classification can reduce false positives in structure-based virtual screening. Proc. Natl Acad. Sci. USA 117, 18477–18488 (2020).
Google Scholar
Deng, C. et al. Vector neurons: a general framework for SO(3)-equivariant networks. In Proc. IEEE/CVF International Conference on Computer Vision 12200–12209 (IEEE, 2021).
Jing, B., Eismann, S., Suriana, P., Townshend, R. J. & Dror, R. Learning from protein structure with geometric vector perceptrons. Preprint at (2020).
Mahmood, O., Mansimov, E., Bonneau, R. & Cho, K. Masked graph modeling for molecule generation. Nat. Commun. 12, 3156 (2021).
Google Scholar
Hu, Z., Dong, Y., Wang, K., Chang, K.-W. & Sun Y. Gpt-gnn: generative pre-training of graph neural networks. In Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 1857–1867 (ACM, 2020).
Izumi, H. et al. The CLIP1–LTK fusion is an oncogenic driver in non‐small‐cell lung cancer. Nature 600, 319–323 (2021).
Google Scholar
Ferla, M. P. et al. Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology. J. Cheminform. 17, 4 (2025).
Google Scholar
Imrie, F., Bradley, A. R., van der Schaar, M. & Deane, C. M. Deep generative models for 3D linker design. J. Chem. Inf. Model. 60, 1983–1995 (2020).
Google Scholar
Langevin, M., Minoux, H., Levesque, M. & Bianciotto, M. Scaffold-constrained molecular generation. J. Chem. Inf. Model. 60, 5637–5646 (2020).
Google Scholar
Zhang, O. et al. Learning on topological surface and geometric structure for 3D molecular generation. Nat. Comput. Sci. 3, 849–859 (2023).
Google Scholar
Clark, D. E. & Pickett, S. D. Computational methods for the prediction of ‘drug-likeness’. Drug Discov. Today 5, 49–58 (2000).
Google Scholar
Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 1, 8 (2009).
Google Scholar
Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 12, 306–317 (2008).
Google Scholar
Sangster, J. Octanol‐water partition coefficients of simple organic compounds. J. Phy. Chem. Ref. Data 18, 1111–1229 (1989).
Google Scholar
Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).
Google Scholar
Irwin, J. J. & Shoichet, B. K. ZINC – a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).
Google Scholar
Francoeur, P. G. et al. Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design. J. Chem. Inf. Model. 60, 4200–4215 (2020).
Google Scholar
Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).
Google Scholar
Alexandar, S. P., Yennamalli, R. M. & Ulaganathan, V. Coarse grained modelling highlights the binding differences in the two different allosteric sites of the human kinesin EG5 and its implications in inhibitor design. Comput. Biol. Chem. 99, 107708 (2022).
Google Scholar
Zheng, S. et al. Deep scaffold hopping with multimodal transformer neural networks. J. Cheminform. 13, 87 (2021).
Google Scholar
Cooper, A. J., Sequist, L. V. & Lin, J. J. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat. Rev. Clin. Oncol. 19, 499–514 (2022).
Google Scholar
Roll, J. D. & Reuther, G. W. ALK-activating homologous mutations in LTK induce cellular transformation. PLoS ONE 7, e31733 (2012).
Google Scholar
Roskoski, R. ROS1 protein-tyrosine kinase inhibitors in the treatment of ROS1 fusion protein-driven non-small cell lung cancers. Pharmacol. Res. 121, 202–212 (2017).
Google Scholar
Luo, S., Guan, J., Ma, J. & Peng, J. A 3D generative model for structure-based drug design. Preprint at (2022).
Ragoza, M., Masuda, T. & Koes, D. R. Generating 3D molecules conditional on receptor binding sites with deep generative models. Chem. Sci. 13, 2701–2713 (2022).
Google Scholar
Hussain, J. & Rea, C. Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J. Chem. Inf. Model. 50, 339–348 (2010).
Google Scholar
Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893 (1996).
Google Scholar
Degen, J., Wegscheid-Gerlach, C., Zaliani, A. & Rarey, M. On the art of compiling and using ‘drug-like’ chemical fragment spaces. ChemMedChem 3, 1503–1507 (2008).
Google Scholar
Varin, T., Schuffenhauer, A., Ertl, P. & Renner, S. Mining for bioactive scaffolds with scaffold networks: improved compound set enrichment from primary screening data. J. Chem. Inf. Model. 51, 1528–1538 (2011).
Google Scholar
Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).
Google Scholar
Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res. 35, D198–D201 (2007).
Google Scholar
Svetnik, V. et al. Boosting: an ensemble learning tool for compound classification and QSAR modeling. J. Chem. Inf. Model. 45, 786–799 (2005).
Google Scholar
Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).
Google Scholar
Ho, T. K. Random decision forests. In Proc. 3rd International Conference on Document Analysis and Recognition 278–282 (IEEE, 1995).
Chen, T. Xgboost: extreme gradient boosting. R package version 0.4-2 (2015).
Dorogush, A. V., Ershov, V. & Gulin, A. CatBoost: gradient boosting with categorical features support. Preprint at (2018).
Ke, G. et al. Lightgbm: a highly efficient gradient boosting decision tree. In Proc. Advances in Neural Information Processing Systems 3149–3157 (ACM, 2017).
Guo, G., Wang, H., Bell, D., Bi, Y. & Greer, K. KNN model-based approach in classification. In Proc. On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE (eds Meersman, R. et al.) 986–996 (Springer, 2003).
Devillers, J. Neural Networks in QSAR and Drug Design (Academic, 1996).
Mordelet, F. & Vert, J. P. A bagging SVM to learn from positive and unlabeled examples. Pattern Recog. Lett. 37, 201–209 (2014).
Google Scholar
Hu, Y. et al. Silicon photonic MEMS switches based on split waveguide crossings. Nat.Commun. 16, 331 (2025).
Google Scholar
Zhang, H. Delete code. Zenodo (2025).
/>
2025-02-20 00:00:00