AI

Deep lead optimization enveloped in protein pocket and its application in designing potent and selective ligands targeting LTK protein

  • Grabley, S. & Thiericke, R. Drug Discovery from Nature (Springer Science & Business Media, 1998).

  • Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).

    Article 
    MATH 

    Google Scholar 

  • Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).

    Article 
    MATH 

    Google Scholar 

  • Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702.e613 (2020).

    Article 
    MATH 

    Google Scholar 

  • Godinez, W. J. et al. Design of potent antimalarials with generative chemistry. Nat. Mach. Intell. 4, 180–186 (2022).

    Article 
    MATH 

    Google Scholar 

  • Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37, 1038–1040 (2019).

    Article 
    MATH 

    Google Scholar 

  • Li, Y. et al. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nat.Com. 13, 6891 (2022).

    Article 
    MATH 

    Google Scholar 

  • Aronson, J. K. & Green, A. R. Me-too pharmaceutical products: History, definitions, examples, and relevance to drug shortages and essential medicines lists. Br. J. Clin. Pharmacol. 86, 2114–2122 (2020).

    Article 
    MATH 

    Google Scholar 

  • Zhang, O. et al. ResGen is a pocket-aware 3D molecular generation model based on parallel multiscale modelling. Nat. Mach. Intell. 5, 1020–1030 (2023).

    Article 
    MATH 

    Google Scholar 

  • Lin, H. et al. DiffBP: generative diffusion of 3D molecules for target protein binding. Chem. Sci. 16, 1417–1431 (2025).

    Article 
    MATH 

    Google Scholar 

  • Schneuing, A. et al. Structure-based drug design with equivariant diffusion models. Nat. Comput. Sci. 4, 899–909 (2024).

    Article 
    MATH 

    Google Scholar 

  • Peng, X. et al. Pocket2mol: efficient molecular sampling based on 3d protein pockets. In Proc. 39th International Conference on Machine Learning 17644–17655 (PMLR, 2022).

  • Davidson, M. et al. Comparison of one-year efficacy and safety of atorvastatin versus lovastatin in primary hypercholesterolemia. Am. J. Cardiol. 79, 1475–1481 (1997).

    Article 
    MATH 

    Google Scholar 

  • Becnel Boyd, L. et al. Relationships among ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs for fluoroquinolone-resistant escherichia coli clinical isolates. Antimicrob. Agents Chemother. 53, 229–234 (2009).

    Article 

    Google Scholar 

  • Bethke, E. et al. From type I to type II: design, synthesis, and characterization of potent pyrazin-2-ones as DFG-out inhibitors of PDGFRβ. ChemMedChem 11, 2664–2674 (2016).

    Article 
    MATH 

    Google Scholar 

  • Green, H., Koes, D. R. & Durrant, J. D. DeepFrag: a deep convolutional neural network for fragment-based lead optimization. Chem. Sci. 12, 8036–8047 (2021).

    Article 
    MATH 

    Google Scholar 

  • Igashov, I. et al. Equivariant 3D-conditional diffusion model for molecular linker design. Nat. Mach. Intell. 6, 417–427 (2024).

    Article 
    MATH 

    Google Scholar 

  • Jin, J. et al. FFLOM: a flow-based autoregressive model for fragment-to-lead optimization. J. Med. Chem. 66, 10808–10823 (2023).

    Article 

    Google Scholar 

  • Hu, C. et al. ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks. J. Cheminform. 15, 91 (2023).

    Article 
    MATH 

    Google Scholar 

  • Loeffler, H. H. et al. Reinvent 4: modern AI–driven generative molecule design. J. Cheminform. 16, 20 (2024).

    Article 
    MATH 

    Google Scholar 

  • Liu, X., Ye, K., van Vlijmen, H. W. T., Ijzerman, A. P. & van Westen, G. J. P. DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning. J. Cheminf. 15, 24 (2023).

    Article 

    Google Scholar 

  • Neves, M. A. C., Totrov, M. & Abagyan, R. Docking and scoring with ICM: the benchmarking results and strategies for improvement. J. Comput. Aided Mol. Des. 26, 675–686 (2012).

    Article 
    MATH 

    Google Scholar 

  • Adeshina, Y. O., Deeds, E. J. & Karanicolas, J. Machine learning classification can reduce false positives in structure-based virtual screening. Proc. Natl Acad. Sci. USA 117, 18477–18488 (2020).

    Article 

    Google Scholar 

  • Deng, C. et al. Vector neurons: a general framework for SO(3)-equivariant networks. In Proc. IEEE/CVF International Conference on Computer Vision 12200–12209 (IEEE, 2021).

  • Jing, B., Eismann, S., Suriana, P., Townshend, R. J. & Dror, R. Learning from protein structure with geometric vector perceptrons. Preprint at (2020).

  • Mahmood, O., Mansimov, E., Bonneau, R. & Cho, K. Masked graph modeling for molecule generation. Nat. Commun. 12, 3156 (2021).

    Article 
    MATH 

    Google Scholar 

  • Hu, Z., Dong, Y., Wang, K., Chang, K.-W. & Sun Y. Gpt-gnn: generative pre-training of graph neural networks. In Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 1857–1867 (ACM, 2020).

  • Izumi, H. et al. The CLIP1–LTK fusion is an oncogenic driver in non‐small‐cell lung cancer. Nature 600, 319–323 (2021).

    Article 
    MATH 

    Google Scholar 

  • Ferla, M. P. et al. Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology. J. Cheminform. 17, 4 (2025).

    Article 

    Google Scholar 

  • Imrie, F., Bradley, A. R., van der Schaar, M. & Deane, C. M. Deep generative models for 3D linker design. J. Chem. Inf. Model. 60, 1983–1995 (2020).

    Article 

    Google Scholar 

  • Langevin, M., Minoux, H., Levesque, M. & Bianciotto, M. Scaffold-constrained molecular generation. J. Chem. Inf. Model. 60, 5637–5646 (2020).

    Article 

    Google Scholar 

  • Zhang, O. et al. Learning on topological surface and geometric structure for 3D molecular generation. Nat. Comput. Sci. 3, 849–859 (2023).

    Article 
    MATH 

    Google Scholar 

  • Clark, D. E. & Pickett, S. D. Computational methods for the prediction of ‘drug-likeness’. Drug Discov. Today 5, 49–58 (2000).

    Article 
    MATH 

    Google Scholar 

  • Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 1, 8 (2009).

    Article 
    MATH 

    Google Scholar 

  • Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 12, 306–317 (2008).

    Article 
    MATH 

    Google Scholar 

  • Sangster, J. Octanol‐water partition coefficients of simple organic compounds. J. Phy. Chem. Ref. Data 18, 1111–1229 (1989).

    Article 
    MATH 

    Google Scholar 

  • Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).

    Article 

    Google Scholar 

  • Irwin, J. J. & Shoichet, B. K. ZINC – a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).

    Article 
    MATH 

    Google Scholar 

  • Francoeur, P. G. et al. Three-dimensional convolutional neural networks and a cross-docked data set for structure-based drug design. J. Chem. Inf. Model. 60, 4200–4215 (2020).

    Article 
    MATH 

    Google Scholar 

  • Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    Article 
    MATH 

    Google Scholar 

  • Alexandar, S. P., Yennamalli, R. M. & Ulaganathan, V. Coarse grained modelling highlights the binding differences in the two different allosteric sites of the human kinesin EG5 and its implications in inhibitor design. Comput. Biol. Chem. 99, 107708 (2022).

    Article 
    MATH 

    Google Scholar 

  • Zheng, S. et al. Deep scaffold hopping with multimodal transformer neural networks. J. Cheminform. 13, 87 (2021).

    Article 
    MATH 

    Google Scholar 

  • Cooper, A. J., Sequist, L. V. & Lin, J. J. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat. Rev. Clin. Oncol. 19, 499–514 (2022).

    Article 

    Google Scholar 

  • Roll, J. D. & Reuther, G. W. ALK-activating homologous mutations in LTK induce cellular transformation. PLoS ONE 7, e31733 (2012).

    Article 
    MATH 

    Google Scholar 

  • Roskoski, R. ROS1 protein-tyrosine kinase inhibitors in the treatment of ROS1 fusion protein-driven non-small cell lung cancers. Pharmacol. Res. 121, 202–212 (2017).

    Article 

    Google Scholar 

  • Luo, S., Guan, J., Ma, J. & Peng, J. A 3D generative model for structure-based drug design. Preprint at (2022).

  • Ragoza, M., Masuda, T. & Koes, D. R. Generating 3D molecules conditional on receptor binding sites with deep generative models. Chem. Sci. 13, 2701–2713 (2022).

    Article 

    Google Scholar 

  • Hussain, J. & Rea, C. Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J. Chem. Inf. Model. 50, 339–348 (2010).

    Article 
    MATH 

    Google Scholar 

  • Bemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893 (1996).

    Article 
    MATH 

    Google Scholar 

  • Degen, J., Wegscheid-Gerlach, C., Zaliani, A. & Rarey, M. On the art of compiling and using ‘drug-like’ chemical fragment spaces. ChemMedChem 3, 1503–1507 (2008).

    Article 
    MATH 

    Google Scholar 

  • Varin, T., Schuffenhauer, A., Ertl, P. & Renner, S. Mining for bioactive scaffolds with scaffold networks: improved compound set enrichment from primary screening data. J. Chem. Inf. Model. 51, 1528–1538 (2011).

    Article 

    Google Scholar 

  • Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).

    Article 

    Google Scholar 

  • Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res. 35, D198–D201 (2007).

    Article 

    Google Scholar 

  • Svetnik, V. et al. Boosting: an ensemble learning tool for compound classification and QSAR modeling. J. Chem. Inf. Model. 45, 786–799 (2005).

    Article 
    MATH 

    Google Scholar 

  • Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    Article 
    MATH 

    Google Scholar 

  • Ho, T. K. Random decision forests. In Proc. 3rd International Conference on Document Analysis and Recognition 278–282 (IEEE, 1995).

  • Chen, T. Xgboost: extreme gradient boosting. R package version 0.4-2 (2015).

  • Dorogush, A. V., Ershov, V. & Gulin, A. CatBoost: gradient boosting with categorical features support. Preprint at (2018).

  • Ke, G. et al. Lightgbm: a highly efficient gradient boosting decision tree. In Proc. Advances in Neural Information Processing Systems 3149–3157 (ACM, 2017).

  • Guo, G., Wang, H., Bell, D., Bi, Y. & Greer, K. KNN model-based approach in classification. In Proc. On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE (eds Meersman, R. et al.) 986–996 (Springer, 2003).

  • Devillers, J. Neural Networks in QSAR and Drug Design (Academic, 1996).

  • Mordelet, F. & Vert, J. P. A bagging SVM to learn from positive and unlabeled examples. Pattern Recog. Lett. 37, 201–209 (2014).

    Article 
    MATH 

    Google Scholar 

  • Hu, Y. et al. Silicon photonic MEMS switches based on split waveguide crossings. Nat.Commun. 16, 331 (2025).

    Article 
    MATH 

    Google Scholar 

  • Zhang, H. Delete code. Zenodo (2025).

  • />
    2025-02-20 00:00:00

    Related Articles

    Back to top button