AI

Flow matching for accelerated simulation of atomic transport in crystalline materials

  • Balluffi, R. W., Allen, S. M. & Carter, W. C. Kinetics of Materials (John Wiley & Sons, 2005).

  • Yip, S. Molecular Mechanisms in Materials: Insights from Atomistic Modeling and Simulation (MIT Press, 2023).

  • Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    Article 

    Google Scholar 

  • Friederich, P., Häse, F., Proppe, J. & Aspuru-Guzik, A. Machine-learned potentials for next-generation matter simulations. Nat. Mater. 20, 750–761 (2021).

    Article 

    Google Scholar 

  • Ko, T. W. & Ong, S. P. Recent advances and outstanding challenges for machine learning interatomic potentials. Nat. Comput. Sci. 3, 998–1000 (2023).

    Article 

    Google Scholar 

  • Batatia, I. et al. A foundation model for atomistic materials chemistry. Preprint at https://doi.org/10.48550/arXiv.2401.00096 (2024).

  • Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Article 

    Google Scholar 

  • Deng, B. et al. Systematic softening in universal machine learning interatomic potentials. npj Comput. Mater. 11, 9 (2025).

    Article 

    Google Scholar 

  • Fu, X. et al. Forces are not enough: benchmark and critical evaluation for machine learning force fields with molecular simulations. Trans. Mach. Learn. Res. 798 (2023).

  • Klein, L. et al. Timewarp: transferable acceleration of molecular dynamics by learning time-coarsened dynamics. Adv. Neural Inf. Process. Syst. 36, 52863–52883 (2023).

  • Schreiner, M., Winther, O. & Olsson, S. Implicit transfer operator learning: multiple time-resolution models for molecular dynamics. Adv. Neural Inf. Process. Syst. 36, 36449–36462 (2023).

  • Hsu, T., Sadigh, B., Bulatov, V. & Zhou, F. Score dynamics: scaling molecular dynamics with picoseconds time steps via conditional diffusion model. J. Chem. Theory Comput. 20, 2335 (2024).

    Article 

    Google Scholar 

  • Li, S. et al. F3low: frame-to-frame coarse-grained molecular dynamics with SE(3) guided flow matching. Preprint at https://doi.org/10.48550/arXiv.2405.00751 (2024).

  • Yu, Z., Huang, W. & Liu, Y. Force-guided bridge matching for full-atom time-coarsened dynamics of peptides. Preprint at https://doi.org/10.48550/arXiv.2408.15126 (2024).

  • Arts, M. et al. Two for one: diffusion models and force fields for coarse-grained molecular dynamics. J. Chem. Theory Comput. 19, 6151–6159 (2023).

    Article 

    Google Scholar 

  • Fu, X., Xie, T., Rebello, N. J., Olsen, B. & Jaakkola, T. S. Simulate time-integrated coarse-grained molecular dynamics with multi-scale graph networks. Trans. Mach. Learn. Res. 1110 (2023).

  • Ashcroft, N. & Mermin, N. D. Solid State Physics (Saunders College Publishing, 1976).

  • Schütt, K. et al. SchNet: a continuous-filter convolutional neural network for modeling quantum interactions. Adv. Neural Inf. Process. Syst. 30, 992–1002 (2017).

  • Marx, D. & Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge Univ. Press, 2009).

  • von Bülow, S., Bullerjahn, J. T. & Hummer, G. Systematic errors in diffusion coefficients from long-time molecular dynamics simulations at constant pressure. J. Chem. Phys. 153, 021101 (2020).

    Article 

    Google Scholar 

  • Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M. & Le, M. Flow matching for generative modeling. In Eleventh International Conference on Learning Representations (ICLR, 2023).

  • Köhler, J., Klein, L. & Noé, F. Equivariant flows: exact likelihood generative learning for symmetric densities. In 37th International Conference on Machine Learning 5361–5370 (PMLR, 2020).

  • Klein, L., Krämer, A. & Noé, F. Equivariant flow matching. Adv. Neural Inf. Process. Syst. 36, 36725–36744 (2023).

  • Schütt, K., Unke, O. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In 38th International Conference on Machine Learning 9377–9388 (PMLR, 2021).

  • Sanchez-Gonzalez, A. et al. Learning to simulate complex physics with graph networks. In 37th International Conference on Machine Learning 8459–8468 (PMLR, 2020).

  • Neumann, M. et al. Orb: a fast, scalable neural network potential. Preprint at https://doi.org/10.48550/arXiv.2410.22570 (2024).

  • Lee, S.-G. et al. PriorGrad: improving conditional denoising diffusion models with data-dependent adaptive prior. In International Conference on Learning Representations (ICLR, 2022).

  • Guan, J. et al. DecompDiff: diffusion models with decomposed priors for structure-based drug design. In 40th International Conference on Machine Learning 11827–11846 (PMLR, 2023).

  • Jing, B. et al. EigenFold: generative protein structure prediction with diffusion models. Preprint at https://doi.org/10.48550/arXiv.2304.02198 (2023).

  • Irwin, R., Tibo, A., Janet, J. P. & Olsson, S. SemlaFlow — Efficient 3D Molecular Generation with Latent Attention and Equivariant Flow Matching. In 28th International Conference on Artificial Intelligence and Statistics (AISTATS, 2025).

  • Pooladian, A.-A. et al. Multisample flow matching: straightening flows with minibatch couplings. In 40th International Conference on Machine Learning 28100–28127 (PMLR, 2023).

  • Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 

    Google Scholar 

  • Jun, K., Lee, B., Kam, R. L. & Ceder, G. The nonexistence of a paddlewheel effect in superionic conductors. Proc. Natl Acad. Sci. USA 121, e2316493121 (2024).

    Article 

    Google Scholar 

  • Kimura, T. et al. Stabilizing high-temperature α-Li3PS4 by rapidly heating the glass. J. Am. Chem. Soc. 145, 14466–14474 (2023).

    Article 

    Google Scholar 

  • Lee, B., Jun, K., Ouyang, B. & Ceder, G. Weak correlation between the polyanion environment and ionic conductivity in amorphous Li–P–S superionic conductors. Chem. Mater. 35, 891–899 (2023).

    Article 

    Google Scholar 

  • Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article 

    Google Scholar 

  • López, C., Rurali, R. & Cazorla, C. How concerted are ionic hops in inorganic solid-state electrolytes? J. Am. Chem. Soc. 146, 8269–8279 (2024).

    Article 

    Google Scholar 

  • Winter, G. & Gómez-Bombarelli, R. Simulations with machine learning potentials identify the ion conduction mechanism mediating non-Arrhenius behavior in LGPS. J. Phys.: Energy 5, 024004 (2023).

    Google Scholar 

  • Tiwary, P. & Parrinello, M. From metadynamics to dynamics. Phys. Rev. Lett. 111, 230602 (2013).

    Article 

    Google Scholar 

  • Bonati, L., Piccini, G. & Parrinello, M. Deep learning the slow modes for rare events sampling. Proc. Natl Acad. Sci. USA 118, e2113533118 (2021).

    Article 

    Google Scholar 

  • Tiwary, P. et al. Generative artificial intelligence for computational chemistry: a roadmap to predicting emergent phenomena. Preprint at https://doi.org/10.48550/arXiv.2409.03118 (2024).

  • Dibak, M., Klein, L., Krämer, A. & Noé, F. Temperature steerable flows and Boltzmann generators. Phys. Rev. Res. 4, L042005 (2022).

    Article 

    Google Scholar 

  • Herron, L., Mondal, K., Schneekloth, J. S. & Tiwary, P. Inferring phase transitions and critical exponents from limited observations with thermodynamic maps. Proc. Natl Acad. Sci. USA 121, e2321971121 (2024).

    Article 

    Google Scholar 

  • Diez, J. V., Schreiner, M. J., Engkvist, O. & Olsson, S. Boltzmann priors for implicit transfer operators. In International Conference on Learning Representations (ICLR, 2025).

  • Mardt, A., Pasquali, L., Noé, F. & Wu, H. Deep learning Markov and Koopman models with physical constraints. In Proc. The First Mathematical and Scientific Machine Learning Conference 451–475 (PMLR, 2020).

  • Falletta, S. et al. Unified differentiable learning of electric response. Nat. Commun. 16, 4031 (2025).

    Article 

    Google Scholar 

  • Imbalzano, G. et al. Uncertainty estimation for molecular dynamics and sampling. J. Chem. Phys. 154, 074102 (2021).

    Article 

    Google Scholar 

  • Tan, A. R., Urata, S., Goldman, S., Dietschreit, J. C. & Gómez-Bombarelli, R. Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles. npj Comput. Mater. 9, 225 (2023).

    Article 

    Google Scholar 

  • Meng, X. & Karniadakis, G. E. A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems. J. Comput. Phys. 401, 109020 (2020).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Maginn, E. J., Messerly, R. A., Carlson, D. J., Roe, D. R. & Elliot, J. R. Best practices for computing transport properties: 1.Self-diffusivity and viscosity from equilibrium molecular dynamics [article v1.0. Living J. Comput. Mol. 1, 6324 (2018).

    Google Scholar 

  • Xie, T., Fu, X., Ganea, O.-E., Barzilay, R. & Jaakkola, T. S. Crystal diffusion variational autoencoder for periodic material generation. In International Conference on Learning Representations (ICLR, 2022).

  • Jiao, R. et al. Crystal structure prediction by joint equivariant diffusion. Adv. Neural Inf. Process. Syst. 36, 17464–17497 (2023).

  • AI4Science, M. et al. Crystal-GFN: sampling crystals with desirable properties and constraints. Preprint at https://doi.org/10.48550/arXiv.2310.04925 (2023).

  • Zeni, C. et al. A generative model for inorganic materials design. Nature 639, 624–632 (2025).

    Article 

    Google Scholar 

  • Yang, S. et al. Scalable diffusion for materials generation. In The Twelfth International Conference on Learning Representations (ICLR, 2024).

  • Miller, B. K., Chen, R. T. Q., Sriram, A. & Wood, B. M. FlowMM: generating materials with Riemannian flow matching. In Proc. 41st International Conference on Machine Learning 35664–35686 (PMLR, 2024).

  • He, X., Zhu, Y., Epstein, A. & Mo, Y. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 4, 18 (2018).

    Article 

    Google Scholar 

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article 

    Google Scholar 

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985).

    Article 

    Google Scholar 

  • Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys.: Condens. Matter 29, 273002 (2017).

    Google Scholar 

  • Basconi, J. E. & Shirts, M. R. Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J. Chem. Theory Comput. 9, 2887–2899 (2013).

    Article 

    Google Scholar 

  • Riebesell, J., Yang, H., Goodall, R. & Baird, S. G. Pymatviz: visualization toolkit for materials informatics. GitHub https://github.com/janosh/pymatviz (2022).

  • Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019).

  • Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. Preprint at https://doi.org/10.48550/arXiv.1903.02428 (2019).

  • McCluskey, A. R., Squires, A. G., Dunn, J., Coles, S. W. & Morgan, B. J. kinisi: Bayesian analysis of mass transport from molecular dynamics simulations. J. Open Source Softw. 9, 5984 (2024).

    Article 

    Google Scholar 

  • Hafner, J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).

    Article 

    Google Scholar 

  • McCluskey, A. R., Coles, S. W. & Morgan, B. J. Accurate estimation of diffusion coefficients and their uncertainties from computer simulation. J. Chem. Theory Comput. 21, 79–87 (2025).

    Article 

    Google Scholar 

  • Nam, J. Data for: flow matching for accelerated simulation of atomic transport in materials. Zenodo https://doi.org/10.5281/zenodo.14889658 (2025).

  • Nam, J. learningmatter-mit/liflow: initial release. GitHub https://github.com/learningmatter-mit/liflow (2025).

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-10-16 00:00:00

    Related Articles

    Back to top button