AI

How a Haystack-Powered Multi-Agent System Detects Incidents, Investigates Metrics and Logs, and Produces Production-Grade Incident Reviews End-to-End

@tool
def sql_investigate(query: str) -> dict:
   try:
       df = con.execute(query).df()
       head = df.head(30)
       return {
           "rows": int(len(df)),
           "columns": list(df.columns),
           "preview": head.to_dict(orient="records")
       }
   except Exception as e:
       return {"error": str(e)}


@tool
def log_pattern_scan(window_start_iso: str, window_end_iso: str, top_k: int = 8) -> dict:
   ws = pd.to_datetime(window_start_iso)
   we = pd.to_datetime(window_end_iso)
   df = logs_df[(logs_df["ts"] >= ws) & (logs_df["ts"] <= we)].copy()
   if df.empty:
       return {"rows": 0, "top_error_kinds": [], "top_services": [], "top_endpoints": []}
   df["error_kind_norm"] = df["error_kind"].fillna("").replace("", "NONE")
   err = df[df["level"].isin(["WARN","ERROR"])].copy()
   top_err = err["error_kind_norm"].value_counts().head(int(top_k)).to_dict()
   top_svc = err["service"].value_counts().head(int(top_k)).to_dict()
   top_ep = err["endpoint"].value_counts().head(int(top_k)).to_dict()
   by_region = err.groupby("region").size().sort_values(ascending=False).head(int(top_k)).to_dict()
   p95_latency = float(np.percentile(df["latency_ms"].values, 95))
   return {
       "rows": int(len(df)),
       "warn_error_rows": int(len(err)),
       "p95_latency_ms": p95_latency,
       "top_error_kinds": top_err,
       "top_services": top_svc,
       "top_endpoints": top_ep,
       "error_by_region": by_region
   }


@tool
def propose_mitigations(hypothesis: str) -> dict:
   h = hypothesis.lower()
   mitigations = []
   if "conn" in h or "pool" in h or "db" in h:
       mitigations += [
           {"action": "Increase DB connection pool size (bounded) and add backpressure at db-proxy", "owner": "Platform", "eta_days": 3},
           {"action": "Add circuit breaker + adaptive timeouts between api-gateway and db-proxy", "owner": "Backend", "eta_days": 5},
           {"action": "Tune query hotspots; add indexes for top offending endpoints", "owner": "Data/DBA", "eta_days": 7},
       ]
   if "timeout" in h or "upstream" in h:
       mitigations += [
           {"action": "Implement hedged requests for idempotent calls (carefully) and tighten retry budgets", "owner": "Backend", "eta_days": 6},
           {"action": "Add upstream SLO-aware load shedding at api-gateway", "owner": "Platform", "eta_days": 7},
       ]
   if "cache" in h:
       mitigations += [
           {"action": "Add request coalescing and negative caching to prevent cache-miss storms", "owner": "Backend", "eta_days": 6},
           {"action": "Prewarm cache for top endpoints during deploys", "owner": "SRE", "eta_days": 4},
       ]
   if not mitigations:
       mitigations += [
           {"action": "Add targeted dashboards and alerts for the suspected bottleneck metric", "owner": "SRE", "eta_days": 3},
           {"action": "Run controlled load test to reproduce and validate the hypothesis", "owner": "Perf Eng", "eta_days": 5},
       ]
   mitigations = mitigations[:10]
   return {"hypothesis": hypothesis, "mitigations": mitigations}


@tool
def draft_postmortem(title: str, window_start_iso: str, window_end_iso: str, customer_impact: str, suspected_root_cause: str, key_facts_json: str, mitigations_json: str) -> dict:
   try:
       facts = json.loads(key_facts_json)
   except Exception:
       facts = {"note": "key_facts_json was not valid JSON"}
   try:
       mits = json.loads(mitigations_json)
   except Exception:
       mits = {"note": "mitigations_json was not valid JSON"}
   doc = {
       "title": title,
       "date_utc": datetime.utcnow().strftime("%Y-%m-%d"),
       "incident_window_utc": {"start": window_start_iso, "end": window_end_iso},
       "customer_impact": customer_impact,
       "suspected_root_cause": suspected_root_cause,
       "detection": {
           "how_detected": "Automated anomaly detection + error-rate spike triage",
           "gaps": ["Add earlier saturation alerting", "Improve symptom-to-cause correlation dashboards"]
       },
       "timeline": [
           {"t": window_start_iso, "event": "Symptoms begin (latency/error anomalies)"},
           {"t": "T+10m", "event": "On-call begins triage; identifies top services/endpoints"},
           {"t": "T+25m", "event": "Mitigation actions initiated (throttling/backpressure)"},
           {"t": window_end_iso, "event": "Customer impact ends; metrics stabilize"},
       ],
       "key_facts": facts,
       "corrective_actions": mits.get("mitigations", mits),
       "followups": [
           {"area": "Reliability", "task": "Add saturation signals + budget-based retries", "priority": "P1"},
           {"area": "Observability", "task": "Add golden signals per service/endpoint", "priority": "P1"},
           {"area": "Performance", "task": "Reproduce with load test and validate fix", "priority": "P2"},
       ],
       "appendix": {"notes": "Generated by a Haystack multi-agent workflow (non-RAG)."}
   }
   return {"postmortem_json": doc}


llm = OpenAIChatGenerator(model="gpt-4o-mini")


state_schema = {
   "metrics_csv_path": {"type": str},
   "logs_csv_path": {"type": str},
   "metrics_summary": {"type": dict},
   "logs_summary": {"type": dict},
   "incident_window": {"type": dict},
   "investigation_notes": {"type": list, "handler": merge_lists},
   "hypothesis": {"type": str},
   "key_facts": {"type": dict},
   "mitigation_plan": {"type": dict},
   "postmortem": {"type": dict},
}


profiler_prompt = """You are a specialist incident profiler.
Goal: turn raw metrics/log summaries into crisp, high-signal findings.
Rules:
- Prefer calling tools over guessing.
- Output must be a JSON object with keys: window, symptoms, top_contributors, hypothesis, key_facts.
- Hypothesis must be falsifiable and mention at least one specific service and mechanism.
"""


writer_prompt = """You are a specialist postmortem writer.
Goal: produce a high-quality postmortem JSON (not prose) using the provided evidence and mitigation plan.
Rules:
- Call tools only if needed.
- Keep 'suspected_root_cause' specific and not generic.
- Ensure corrective actions have owners and eta_days.
"""


coordinator_prompt = """You are an incident commander coordinating a non-RAG multi-agent workflow.
You must:
1) Load inputs
2) Find an incident window (use p95_ms or error_rate)
3) Investigate with targeted SQL and log pattern scan
4) Ask the specialist profiler to synthesize evidence
5) Propose mitigations
6) Ask the specialist writer to draft a postmortem JSON
Return a final response with:
- A short executive summary (max 10 lines)
- The postmortem JSON
- A compact runbook checklist (bulleted)
"""


profiler_agent = Agent(
   chat_generator=llm,
   tools=[load_inputs, detect_incident_window, sql_investigate, log_pattern_scan],
   system_prompt=profiler_prompt,
   exit_conditions=["text"],
   state_schema=state_schema
)


writer_agent = Agent(
   chat_generator=llm,
   tools=[draft_postmortem],
   system_prompt=writer_prompt,
   exit_conditions=["text"],
   state_schema=state_schema
)


profiler_tool = ComponentTool(
   component=profiler_agent,
   name="profiler_specialist",
   description="Synthesizes incident evidence into a falsifiable hypothesis and key facts (JSON output).",
   outputs_to_string={"source": "last_message"}
)


writer_tool = ComponentTool(
   component=writer_agent,
   name="postmortem_writer_specialist",
   description="Drafts a postmortem JSON using title/window/impact/rca/facts/mitigations.",
   outputs_to_string={"source": "last_message"}
)


coordinator_agent = Agent(
   chat_generator=llm,
   tools=[
       load_inputs,
       detect_incident_window,
       sql_investigate,
       log_pattern_scan,
       propose_mitigations,
       profiler_tool,
       writer_tool,
       draft_postmortem
   ],
   system_prompt=coordinator_prompt,
   exit_conditions=["text"],
   state_schema=state_schema
)

Don’t miss more hot News like this! AI/" target="_blank" rel="noopener">Click here to discover the latest in AI news!

2026-01-27 02:59:00

Related Articles

Back to top button