AI

Deep spectral component filtering as a foundation model for spectral analysis demonstrated in metabolic profiling

  • Holmes, E., Wilson, I. D. & Nicholson, J. K. Metabolic phenotyping in health and disease. Cell 134, 714–717 (2008).

    Google Scholar 

  • Nicholson, J. K. Global systems biology, personalized medicine and molecular epidemiology. Mol. Syst. Biol. 2, 52 (2006).

    Google Scholar 

  • Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat. Methods 18, 747–756 (2021).

    Google Scholar 

  • Julkunen, H. et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat. Commun. 14, 604 (2023).

    Google Scholar 

  • Hu, J. et al. RSPSSL: a novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization. Light Sci. Appl. 13, 52 (2024).

    Google Scholar 

  • He, H. et al. Noise learning of instruments for high-contrast, high-resolution and fast hyperspectral microscopy and nanoscopy. Nat. Commun. 15, 754 (2024).

    Google Scholar 

  • Guo, S., Popp, J. & Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling. Nat. Protoc. 16, 5426–5459 (2021).

    Google Scholar 

  • Felten, J. et al. Vibrational spectroscopic image analysis of biological material using multivariate curve resolution–alternating least squares (MCR-ALS). Nat. Protoc. 10, 217–240 (2015).

    Google Scholar 

  • Bi, X. et al. Molecule-resolvable SERSome for metabolic profiling. Chem https://doi.org/10.1016/j.chempr.2025.102528 (2025).

  • Su, H. et al. Surface-enhanced Raman spectroscopy study on the structure changes of 4-mercaptophenylboronic acid under different pH conditions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 185, 336–342 (2017).

    Google Scholar 

  • Giese, B. & McNaughton, D. Surface-enhanced Raman spectroscopic study of uracil. The influence of the surface substrate, surface potential, and pH. J. Phys. Chem. B 106, 1461–1470 (2002).

    Google Scholar 

  • Zarei, M. et al. Machine learning analysis of Raman spectra to quantify the organic constituents in complex organic-mineral mixtures. Anal. Chem. 95, 15908–15916 (2023).

    Google Scholar 

  • Koyun, O. C. et al. RamanFormer: a transformer-based quantification approach for raman mixture components. ACS Omega 9, 23241–23251 (2024).

    Google Scholar 

  • Brown, T. et al. Language models are few-shot learners. In Proc. Advances in Neural Information Processing Systems Vol. 33, 1877–1901 (NeurIPS, 2020).

  • Bi, X., Czajkowsky, D. M., Shao, Z. & Ye, J. Digital colloid-enhanced Raman spectroscopy by single-molecule counting. Nature 628, 771–775 (2024).

    Google Scholar 

  • Luo, Y. et al. Component identification for the SERS spectra of microplastics mixture with convolutional neural network. Sci. Total Environ. 895, 165138 (2023).

    Google Scholar 

  • Bi, X. et al. SERSomes for metabolic phenotyping and prostate cancer diagnosis. Cell Rep. Med. https://doi.org/10.1016/J.XCRM.2024.101579 (2024).

  • Ye, J. et al. Hypoxanthine is a metabolic biomarker for inducing GSDME-dependent pyroptosis of endothelial cells during ischemic stroke. Theranostics 14, 6071–6087 (2024).

    Google Scholar 

  • Xue, B. Source code for deep spectral component filtering: DSCF_V1 (v1.2). Zenodo https://doi.org/10.5281/zenodo.15013288 (2025).

  • Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J. & Maier-Hein, K. H. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18, 203–211 (2020).

    Google Scholar 

  • Liu, Z. et al. Swin transformer: hierarchical vision transformer using shifted windows. In Proc. IEEE/CVF International Conference on Computer Vision 9992–10002 (IEEE, 2021).

  • Hughes, C., Gaunt, L., Brown, M., Clarke, N. W. & Gardner, P. Assessment of paraffin removal from prostate FFPE sections using transmission mode FTIR-FPA imaging. Anal. Methods 6, 1028–1035 (2014).

    Google Scholar 

  • Meuse, C. W. & Barker, P. E. Quantitative infrared spectroscopy of formalin-fixed, paraffin-embedded tissue specimens: paraffin wax removal with organic solvents. Appl. Immunohistochem. Mol. Morphol. 17, 547–552 (2009).

    Google Scholar 

  • Nallala, J., Lloyd, G. R. & Stone, N. Evaluation of different tissue de-paraffinization procedures for infrared spectral imaging. Analyst 140, 2369–2375 (2015).

    Google Scholar 

  • De Lima, F. A. et al. Digital de-waxing on FTIR images. Analyst 142, 1358–1370 (2017).

    Google Scholar 

  • Bai, B. et al. Deep learning-enabled virtual histological staining of biological samples. Light Sci. Appl. 12, 57 (2023).

    Google Scholar 

  • Lotfollahi, M., Daeinejad, D., Berisha, S. & Mayerich, D. Digital staining of high-resolution FTIR spectroscopic images. In Proc. 2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 973–977 (IEEE, 2018).

  • Gobinet, C. et al. Automatic identification of paraffin pixels on FTIR images acquired on FFPE human samples. Anal. Chem. 93, 3750–3761 (2021).

    Google Scholar 

  • Bi, X., Fang, Z., Deng, B., Zhou, L. & Ye, J. Ultrahigh Raman-fluorescence dual-enhancement in nanogaps of silver-coated gold nanopetals. Adv. Opt. Mater. 11, 2300188 (2023).

    Google Scholar 

  • Wang, H. P. et al. Recent advances of chemometric calibration methods in modern spectroscopy: algorithms, strategy, and related issues. trends Anal. Chem. 153, 116648 (2022).

    Google Scholar 

  • Zou, Z. et al. A deep learning model for predicting selected organic molecular spectra. Nat. Comput. Sci. 3, 957–964 (2023).

    Google Scholar 

  • Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Google Scholar 

  • You, L. et al. An exposome atlas of serum reveals the risk of chronic diseases in the Chinese population. Nat. Commun. 15, 2268 (2024).

    Google Scholar 

  • Oh, H. S. H. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).

    Google Scholar 

  • Enroth, C. et al. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc. Natl Acad. Sci. USA 97, 10723–10728 (2000).

    Google Scholar 

  • Schwedhelm, E. et al. Trimethyllysine, vascular risk factors and outcome in acute ischemic stroke (MARK–STROKE). Amino Acids 53, 555–561 (2021).

    Google Scholar 

  • Farthing, D. E., Farthing, C. A. & Xi, L. Inosine and hypoxanthine as novel biomarkers for cardiac ischemia: from bench to point-of-care. Exp. Biol. Med. 240, 821–831 (2015).

    Google Scholar 

  • Dudka, I. et al. Comprehensive metabolomics analysis of prostate cancer tissue in relation to tumor aggressiveness and TMPRSS2-ERG fusion status. BMC Cancer 20, 437 (2020).

    Google Scholar 

  • Chen, M. M. & Meng, L. H. The double faced role of xanthine oxidoreductase in cancer. Acta Pharmacol. Sin. 43, 1623–1632 (2021).

    Google Scholar 

  • Sreekumar, A. et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910–914 (2009).

    Google Scholar 

  • Clark, D. E. et al. The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res. 65, 3108–3116 (2005).

    Google Scholar 

  • Maitre, M., Klein, C., Patte-Mensah, C. & Mensah-Nyagan, A. G. Tryptophan metabolites modify brain Aβ peptide degradation: a role in Alzheimer’s disease? Prog. Neurobiol. 190, 101800 (2020).

    Google Scholar 

  • Horgan, C. C. et al. High-throughput molecular imaging via deep-learning-enabled Raman spectroscopy. Anal. Chem. 93, 15850–15860 (2021).

    Google Scholar 

  • Ribeiro, M. T., Singh, S. & Guestrin, C. ‘Why should I trust you?’: explaining the predictions of any classifier. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ed. Balaji, K.) 1135–1144 (ACM, 2016).

  • Radford, A. et al. Language models are unsupervised multitask learners. OpenAI 1, 9 (2019).

    Google Scholar 

  • Liu, B., Yuan, Y., Pan, X., Shen, H-.B. & Jin, C. AttSiOff: a self-attention-based approach on siRNA design with inhibition and off-target effect prediction. Med-X https://doi.org/10.1007/s44258-024-00019-1 (2024).

  • Leopold, N. & Lendl, B. A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 107, 5723–5727 (2003).

    Google Scholar 

  • Lee, P. C. & Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86, 3391–3395 (1982).

    Google Scholar 

  • Yuan, H. et al. Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 23, 075102 (2012).

    Google Scholar 

  • Kaur, V., Tanwar, S., Kaur, G. & Sen, T. DNA-origami-based assembly of Au@Ag Nanostar dimer nanoantennas for label-free sensing of pyocyanin. Chem. Phys. Chem. 22, 160–167 (2021).

    Google Scholar 

  • He, K. et al. Masked autoencoders are scalable vision learners. In Proc. IEEE/CVF International Conference on Computer Vision 15979–15988 (IEEE, 2022).

  • Chau, S. L., Hu, R., London, A., Gonzalez, J. & Sejdinovic, D. RKHS-SHAP: Shapley values for kernel methods. Adv. Neural Inf. Process Syst. 35, 13050–13063 (2022).

    Google Scholar 

  • Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. In Proc. 34th International Conference on Machine Learning Vol. 70 (eds Precup, D. & Teh, Y. W.) 3145–3153 (PMLR, 2017).

  • Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. In Proc. IEEE/CVF International Conference on Computer Vision 618–626 (IEEE, 2017).

  • Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks. In Proc. European Conference on Computer Vision 818–833 (Springer, 2014).

  • Lundberg, S. M., Allen, P. G. & Lee, S.-I. A unified approach to interpreting model predictions. In Proc. Advances in Neural Information Processing Systems Vol. 30 (eds Guyon, I. et al.) 4765–4774 (Curran Associates, 2017).

  • Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. In Proc. 34th International Conference on Machine Learning (JMLR, 2017).

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  • Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep features for discriminative localization. In Proc. IEEE/CVF International Conference on Computer Vision 2921–2929 (IEEE, 2016).

  • Xue, B. FTIR of liver tissue. figshare https://doi.org/10.6084/m9.figshare.28107236.v1 (2024).

  • Xue, B. ComFilE for PCa. figshare https://doi.org/10.6084/m9.figshare.28107395.v1 (2024).

  • Xue, B. ComFilE for stroke. figshare https://doi.org/10.6084/m9.figshare.28107431.v1 (2024).

  • Xue, B. ComFilE for AD. figshare https://doi.org/10.6084/m9.figshare.28107578.v1 (2024).

  • Xue, B. SERS quantification. figshare https://doi.org/10.6084/m9.figshare.28107281.v1 (2024).

  • Xue, B. SERS nanoparticle background removal (PCa). figshare https://doi.org/10.6084/m9.figshare.28107326.v1 (2024).

  • Zou, Z. QM9S dataset. figshare https://doi.org/10.6084/m9.figshare.24235333.v3 (2023).

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-05-23 00:00:00

    Related Articles

    Back to top button