AI

A neural symbolic model for space physics

  • Cranmer, M. D. Interpretable Machine Learning for the Physical Sciences. PhD thesis, Princeton Univ. (2023).

  • Pearce Williams, L. Faraday’s discovery of electromagnetic induction. Contemp. Phys. 5, 28–37 (1963).

    Article 

    Google Scholar 

  • Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 3932–3937 (2016).

    Article 
    MathSciNet 

    Google Scholar 

  • De Florio, M., Kevrekidis, I. G. & Karniadakis, G. E. AI-Lorenz: a physics-data-driven framework for black-box and gray-box identification of chaotic systems with symbolic regression. Chaos Solitons Fractals 188, 115538 (2024).

    Article 
    MathSciNet 

    Google Scholar 

  • Ahmadi Daryakenari, N., De Florio, M., Shukla, K. & Karniadakis, G. E. AI-Aristotle: a physics-informed framework for systems biology gray-box identification. PLoS Comput. Biol. 20, e1011916 (2024).

    Article 

    Google Scholar 

  • Schmidt, M. D. & Lipson, H. Age–fitness Pareto optimization. In Proc. 12th Annual Conference on Genetic and Evolutionary Computation 543–544 (Association for Computing Machinery, 2010).

  • Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009).

    Article 

    Google Scholar 

  • La Cava, W., Helmuth, T., Spector, L. & Moore, J. H. A probabilistic and multi-objective analysis of lexicase selection and ε-lexicase selection. Evol. Comput. 27, 377–402 (2019).

    Article 

    Google Scholar 

  • La Cava, W., Singh, T. R., Taggart, J., Suri, S. & Moore, J. H. Learning concise representations for regression by evolving networks of trees. In 7th International Conference on Learning Representations Vol. 6 (ed. Sainath, T.) 3987–4002 (ICLR, 2019).

  • Virgolin, M., Alderliesten, T., Witteveen, C. & Bosman, P. A. Improving model-based genetic programming for symbolic regression of small expressions. Evol. Comput. 29, 211–237 (2021).

    Article 

    Google Scholar 

  • McCormick, T. gplearn: genetic programming in Python. GitHub https://github.com/trevorstephens/gplearn (2019).

  • De Franca, F. & Aldeia, G. Interaction-transformation evolutionary algorithm for symbolic regression. Evol. Comput. 29, 367–390 (2021).

    Article 

    Google Scholar 

  • Arnaldo, I., Krawiec, K. & O’Reilly, U.-M. Multiple regression genetic programming. In Proc. 2014 Annual Conference on Genetic and Evolutionary Computation (ed. Igel, C.) 879–886 (Association for Computing Machinery, 2014).

  • Kommenda, M., Burlacu, B., Kronberger, G. & Affenzeller, M. Parameter identification for symbolic regression using nonlinear least squares. Genet. Program. Evolvable Mach. 21, 471–501 (2020).

    Article 

    Google Scholar 

  • Virgolin, M., Alderliesten, T. & Bosman, P. A. Linear scaling with and within semantic backpropagation-based genetic programming for symbolic regression. In Proc. Genetic and Evolutionary Computation Conference (ed. López-Ibáñez, M.) 1084–1092 (Association for Computing Machinery, 2019).

  • Kamienny, P.-A., Lample, G., Lamprier, S. & Virgolin, M. Deep generative symbolic regression with Monte-Carlo-tree-search. Proc. Mach. Learn. Res. 202, 15655–15668 (2023).

  • Lu, Q., Tao, F., Zhou, S. & Wang, Z. Incorporating actor–critic in Monte Carlo tree search for symbolic regression. Neural Comput. Appl. 33, 8495–8511 (2021).

    Article 

    Google Scholar 

  • Xu, Y., Liu, Y. & Sun, H. Reinforcement symbolic regression machine. In Proc. 12th International Conference on Learning Representations (ICLR, 2024).

  • Xie, Y. et al. An efficient and generalizable symbolic regression method for time series analysis. Preprint at http://arxiv.org/abs/2409.03986 (2024).

  • Sun, F., Liu, Y., Wang, J.-X. & Sun, H. Symbolic physics learner: discovering governing equations via Monte Carlo tree search. In Proc. 11th International Conference on Learning Representations (ICLR, 2023).

  • Valipour, M., You, B., Panju, M. & Ghodsi, A. SymbolicGPT: a generative transformer model for symbolic regression. Preprint at https://arxiv.org/abs/2106.14131 (2021).

  • Chen, T., Li, Z., Xu, P. & Zheng, H. Bootstrapping OTS-Funcimg pre-training model (Botfip): a comprehensive multimodal scientific computing framework and its application in symbolic regression task. Complex Intell. Syst. 11, 417 (2025).

  • Xing, H., Salleb-Aouissi, A. & Verma, N. Automated symbolic law discovery: a computer vision approach. In Proc. AAAI Conference on Artificial Intelligence 660–668 (AAAI, 2021).

  • Kamienny, P.-A., d’Ascoli, S., Lample, G. & Charton, F. End-to-end symbolic regression with transformers. Adv. Neural Inf. Process. Syst. 35, 10269–10281 (2022).

    Google Scholar 

  • Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A. & Parascandolo, G. Neural symbolic regression that scales. Proc. Mach. Learn. Res. 139, 936–945 (2021).

  • Shojaee, P., Meidani, K., Barati Farimani, A. & Reddy, C. Transformer-based planning for symbolic regression. Adv. Neural Inf. Process. Syst. 36, 45907–45919 (2023).

    Google Scholar 

  • Udrescu, S.-M. & Tegmark, M. AI Feynman: a physics-inspired method for symbolic regression. Sci. Adv. 6, eaay2631 (2020).

    Article 

    Google Scholar 

  • Cranmer, M. Interpretable machine learning for science with PySR and SymbolicRegression.jl. Preprint at https://arxiv.org/abs/2305.01582 (2023).

  • Burlacu, B., Kronberger, G. & Kommenda, M. Operon C++: an efficient genetic programming framework for symbolic regression. In Proc. 2020 Genetic and Evolutionary Computation Conference Companion 1562–1570 (Association for Computing Machinery, 2020).

  • Grayeli, A., Sehgal, A., Costilla Reyes, O., Cranmer, M. & Chaudhuri, S. Symbolic regression with a learned concept library. Adv. Neural Inf. Process. Syst. 37, 44678–44709 (2024).

    Google Scholar 

  • Shojaee, P., Meidani, K., Gupta, S., Farimani, A. B. & Reddy, C. K. LLM-SR: scientific equation discovery via programming with large language models. In Proc. 13th International Conference on Learning Representations (ICLR, 2025).

  • Landajuela, M. et al. A unified framework for deep symbolic regression. Adv. Neural Inf. Process. Syst. 35, 33985–33998 (2022).

    Google Scholar 

  • Tenachi, W., Ibata, R. & Diakogiannis, F. I. Deep symbolic regression for physics guided by units constraints: toward the automated discovery of physical laws. Astrophys. J. 959, 99 (2023).

    Article 

    Google Scholar 

  • Udrescu, S.-M. et al. AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. Adv. Neural Inf. Process. Syst. 33, 4860–4871 (2020).

    Google Scholar 

  • Scholl, P., Bieker, K., Hauger, H. & Kutyniok, G. ParFam—(neural guided) symbolic regression via continuous global optimization. In Proc. 13th International Conference on Learning Representations (ICLR, 2025).

  • Liu, Z. et al. KAN: Kolmogorov–Arnold networks. In Proc. 13th International Conference on Learning Representations (ICLR, 2025).

  • Liu, Z., Ma, P., Wang, Y., Matusik, W. & Tegmark, M. KAN 2.0: Kolmogorov–Arnold networks meet science. Preprint at https://arxiv.org/abs/2408.10205 (2024).

  • Jin, Y., Fu, W., Kang, J., Guo, J. & Guo, J. Bayesian symbolic regression. Preprint at https://arxiv.org/abs/1910.08892 (2019).

  • La Cava, W. et al. Contemporary symbolic regression methods and their relative performance. Adv. Neural Inf. Process. Syst. 2021, 1–16 (2021).

  • Feynman, R., Leighton, R. & Sands, M. The Feynman Lectures on Physics, Vol. I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat (Basic Books, 2011).

  • Feynman, R., Leighton, R. & Sands, M. The Feynman Lectures on Physics, Vol. 2 (Pearson/Addison-Wesley, 1963).

  • Feynman, R., Leighton, R. & Sands, M. The Feynman Lectures on Physics, Vol. 3 (Pearson/Addison-Wesley, 1963).

  • SILSO World Data Center. The International Sunspot Number (1749–2023). International Sunspot Number Monthly Bulletin and Online Catalogue (2023).

  • Hathaway, D. H., Wilson, R. M. & Reichmann, E. J. The shape of the sunspot cycle. Sol. Phys. 151, 177–190 (1994).

    Article 

    Google Scholar 

  • Upton, L. A. & Hathaway, D. H. Solar cycle precursors and the outlook for cycle 25. J. Geophys. Res. Space Phys. 128, e2023JA031681 (2023).

  • Brehm, N. et al. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings. Nat. Geosci. 14, 10–15 (2021).

    Article 

    Google Scholar 

  • Wang, C.-P. et al. Empirical modeling of plasma sheet pressure and three-dimensional force-balanced magnetospheric magnetic field structure: 1. Observation. J. Geophys. Res. Space Phys. 118, 6154–6165 (2013).

    Article 

    Google Scholar 

  • Yue, C., Wang, C.-P., Zaharia, S. G., Xing, X. & Lyons, L. Empirical modeling of plasma sheet pressure and three-dimensional force-balanced magnetospheric magnetic field structure: 2. Modeling. J. Geophys. Res. Space Phys. 118, 6166–6175 (2013).

    Article 

    Google Scholar 

  • Lui, A. T. & Hamilton, D. C. Radial profiles of quiet time magnetospheric parameters. J. Geophys. Res. Space Phys. 97, 19325–19332 (1992).

    Article 

    Google Scholar 

  • Hotta, H. & Kusano, K. Solar differential rotation reproduced with high-resolution simulation. Nat. Astron. 5, 1100–1102 (2021).

    Article 

    Google Scholar 

  • Vasil, G. M. et al. The solar dynamo begins near the surface. Nature 629, 769–772 (2024).

    Article 

    Google Scholar 

  • Snodgrass, H. B. Magnetic rotation of the solar photosphere. Astrophys. J. 270, 288–299 (1983).

  • Rao, S. et al. Height-dependent differential rotation of the solar atmosphere detected by CHASE. Nat. Astron. 8, 1102–1109 (2024).

  • Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. & Young, P. R. CHIANTI—an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125, 149–173 (1997).

    Article 

    Google Scholar 

  • Dufresne, R. P. et al. CHIANTI—an atomic database for emission lines—paper. XVIII. Version 11, advanced ionization equilibrium models: density and charge transfer effects. Astrophys. J. 974, 71 (2024).

  • Kramida, A., Ralchenko, Y., Reader, J. & NIST ASD Team. NIST Atomic Spectra Database v.5.12 (NIST, accessed 20 October 2024); https://physics.nist.gov/asd

  • Aschwanden, M. J. Physics of the Solar Corona. An Introduction (Praxis–Springer, 2004).

  • Mason, H. E. & Monsignori Fossi, B. C. Spectroscopic diagnostics in the VUV for solar and stellar plasmas. Astron. Astrophys. Rev. 6, 123–179 (1994).

    Article 

    Google Scholar 

  • Raymond, J. C. & Smith, B. W. Soft X-ray spectrum of a hot plasma. Astrophys. J. Suppl. Ser. 35, 419–439 (1977).

    Article 

    Google Scholar 

  • Xiao, C. et al. Evidence for lunar tide effects in Earth’s plasmasphere. Nat. Phys. 19, 486–491 (2023).

    Article 

    Google Scholar 

  • RBSP/EFW Data (Univ. Minnesota, accessed 24 September 2025); http://www.space.umn.edu/rbspefw-data/

  • Zhang, Z., Liu, W. L., Zhang, D. J. & Cao, J. B. Estimating the corotation lag of the plasmasphere based on the electric field measurements of the Van Allen Probes. Adv. Space Res. 73, 758–766 (2024).

    Article 

    Google Scholar 

  • Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140–1144 (2018).

    Article 
    MathSciNet 

    Google Scholar 

  • Touvron, H. et al. Llama 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023).

  • Maurya, A., Ye, J., Rafique, M. M., Cappello, F. & Nicolae, B. Deep optimizer states: towards scalable training of transformer models using interleaved offloading. In Proc. 25th International Middleware Conference, 404–416 (Association for Computing Machinery, 2024).

  • Lample, G. & Charton, F. Deep learning for symbolic mathematics. In International Conference on Learning Representations (ICLR, 2020).

  • Charton, F. Linear algebra with transformers. Trans. Mach. Learn. Res. (2022).

  • Bendinelli, T., Biggio, L. & Kamienny, P.-A. Controllable neural symbolic regression. Proc. Mach. Learn. Res. 202, 2063–2077 (2023).

  • Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008 (2017).

  • Fletcher, R. Practical Methods of Optimization 2nd ed. (Wiley, 1987).

  • Ying, J. PhyE2E_datas. figshare https://figshare.com/articles/dataset/PhyE2E_datas/29615831 (2025).

  • Ying, J. Jie0618/PhysicsRegression: code for “A neural symbolic model for space physics” version v1.0.0. Zenodo https://doi.org/10.5281/zenodo.16305086 (2025).

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-10-15 00:00:00

    Related Articles

    Back to top button