AI

Optimal transport for generating transition states in chemical reactions

  • Truhlar, D. G., Garrett, B. C. & Klippenstein, S. J. Current status of transition-state theory. J. Phys. Chem. 100, 12771–12800 (1996).

    Article 

    Google Scholar 

  • E, W. & Vanden-Eijnden, E. Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 61, 391–420 (2010).

    Article 

    Google Scholar 

  • Dewyer, A. L., Argüelles, A. J. & Zimmerman, P. M. Methods for exploring reaction space in molecular systems. WIREs Comput. Mol. Sci. 8, e1354 (2018).

    Article 

    Google Scholar 

  • Unsleber, J. P. & Reiher, M. The exploration of chemical reaction networks. Annu. Rev. Phys. Chem. 71, 121–142 (2020). PMID: 32105566.

    Article 

    Google Scholar 

  • Klucznik, T. et al. Computational prediction of complex cationic rearrangement outcomes. Nature 625, 508–515 (2024).

    Google Scholar 

  • Back, S. et al. Accelerated chemical science with AI. Digit. Discov. 3, 23–33 (2024).

    Article 

    Google Scholar 

  • Nandy, A. et al. Computational discovery of transition-metal complexes: from high-throughput screening to machine learning. Chem. Rev. 121, 9927–10000 (2021).

    Article 

    Google Scholar 

  • Zhang, S. et al. Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential. Nat. Chem. https://doi.org/10.1038/s41557-023-01427-3 (2024).

  • Prozument, K. et al. Photodissociation transition states characterized by chirped pulse millimeter wave spectroscopy. Proc. Natl Acad. Sci. USA 117, 146–151 (2020).

    Article 

    Google Scholar 

  • Liu, Y. et al. Rehybridization dynamics into the pericyclic minimum of an electrocyclic reaction imaged in real-time. Nat. Commun. 14, 2795 (2023).

    Article 

    Google Scholar 

  • Mardirossian, N. & Head-Gordon, M. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115, 2315–2372 (2017).

    Article 

    Google Scholar 

  • Weinan, E., Ren, W. & Vanden-Eijnden, E. String method for the study of rare events. Phys. Rev. B 66, 052301 (2002).

    Article 

    Google Scholar 

  • Peters, B., Heyden, A., Bell, A. T. & Chakraborty, A. A growing string method for determining transition states: comparison to the nudged elastic band and string methods. J. Chem. Phys. 120, 7877–7886 (2004).

    Article 

    Google Scholar 

  • Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

    Article 

    Google Scholar 

  • Maeda, S., Taketsugu, T. & Morokuma, K. Exploring transition state structures for intramolecular pathways by the artificial force induced reaction method. J. Comput. Chem. 35, 166–173 (2014).

    Article 

    Google Scholar 

  • Shang, C. & Liu, Z. P. Stochastic surface walking method for structure prediction and pathway searching. J. Chem. Theory Comput. 9, 1838–1845 (2013).

    Article 

    Google Scholar 

  • Durant, J. L. Evaluation of transition state properties by density functional theory. Chem. Phys. Lett. 256, 595–602 (1996).

    Article 

    Google Scholar 

  • Zimmerman, P. M. Automated discovery of chemically reasonable elementary reaction steps. J. Comput. Chem. 34, 1385–1392 (2013).

    Article 

    Google Scholar 

  • Simm, G. N., Vaucher, A. C. & Reiher, M. Exploration of reaction pathways and chemical transformation networks. J. Phys. Chem. A 123, 385–399 (2019).

    Article 

    Google Scholar 

  • Unsleber, J. P. et al. High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation. J. Phys. Chem. 158, 084803 (2023).

    Article 

    Google Scholar 

  • Zhao, Q. & Savoie, B. M. Simultaneously improving reaction coverage and computational cost in automated reaction prediction tasks. Nat. Comput. Sci. 1, 479–490 (2021).

    Article 

    Google Scholar 

  • Yuan, E. C.-Y. et al. Analytical ab initio Hessian from a deep learning potential for transition state optimization. Nat. Commun. 15, 8865 (2024).

    Article 

    Google Scholar 

  • Wang, L.-P. et al. Discovering chemistry with an ab initio nanoreactor. Nat. Chem. 6, 1044–1048 (2014).

    Article 

    Google Scholar 

  • Pieri, E. et al. The non-adiabatic nanoreactor: towards the automated discovery of photochemistry. Chem. Sci. 12, 7294–7307 (2021).

    Article 

    Google Scholar 

  • Zeng, J., Cao, L., Xu, M., Zhu, T. & Zhang, J. Z. H. Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation. Nat. Commun. 11, 5713 (2020).

    Article 

    Google Scholar 

  • Van de Vijver, R. & Zádor, J. Kinbot: automated stationary point search on potential energy surfaces. Comput. Phys. Commun. 248, 106947 (2020).

    Article 

    Google Scholar 

  • von Lilienfeld, O. A., Müller, K.-R. & Tkatchenko, A. Exploring chemical compound space with quantum-based machine learning. Nat. Rev. Chem. 4, 347–358 (2020).

    Article 

    Google Scholar 

  • Margraf, J. T., Jung, H., Scheurer, C. & Reuter, K. Exploring catalytic reaction networks with machine learning. Nat. Catal. 6, 112–121 (2023).

    Article 

    Google Scholar 

  • Schreiner, M., Bhowmik, A., Vegge, T., Jørgensen, P. B. & Winther, O. NeuralNEB—neural networks can find reaction paths fast. Mach. Learn. Sci. Technol. 3, 045022 (2022).

    Article 

    Google Scholar 

  • Zhang, S. et al. Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential. Nat. Chem. 16, 727–734 (2024).

    Article 

    Google Scholar 

  • Zhang, J. et al. Deep reinforcement learning of transition states. Phys. Chem. Chem. Phys. 23, 6888–6895 (2021).

    Article 

    Google Scholar 

  • Holdijk, L. et al. Stochastic optimal control for collective variable free sampling of molecular transition paths. Adv. Neural Inf. Process. Syst. 36, 79540–79556 (2023).

    Google Scholar 

  • Pattanaik, L., Ingraham, J. B., Grambow, C. A. & Green, W. H. Generating transition states of isomerization reactions with deep learning. Phys. Chem. Chem. Phys. 22, 23618–23626 (2020).

    Article 

    Google Scholar 

  • van Gerwen, P. et al. EquiReact: an equivariant neural network for chemical reactions. Preprint at https://arxiv.org/abs/2312.08307v2 (2023).

  • Makoś, M. Z., Verma, N., Larson, E. C., Freindorf, M. & Kraka, E. Generative adversarial networks for transition state geometry prediction. J. Chem. Phys. 155, 024116 (2021).

    Article 

    Google Scholar 

  • Choi, S. Prediction of transition state structures of gas-phase chemical reactions via machine learning. Nat. Commun. 14, 1168 (2023).

    Article 

    Google Scholar 

  • Ho, J., Jain, A. & Abbeel, P. in Advances in Neural Information Processing Systems (eds Larochelle, H. et al.) vol. 33, 6840–6851 (Curran Associates, 2020).

  • Kim, S., Woo, J. & Kim, W. Y. Diffusion-based generative AI for exploring transition states from 2D molecular graphs. Nat. Commun. 15, 341 (2024).

    Article 

    Google Scholar 

  • Duan, C., Du, Y., Jia, H. & Kulik, H. J. Accurate transition state generation with an object-aware equivariant elementary reaction diffusion model. Nat. Comput. Sci. 3, 1045–1055 (2023).

    Article 

    Google Scholar 

  • Cheng, A. H., Lo, A., Miret, S., Pate, B. H. & Aspuru-Guzik, A. Determining 3D structure from molecular formula and isotopologue rotational spectra in natural abundance with reflection-equivariant diffusion. J. Chem. Phys. 160, 124115 (2024).

    Article 

    Google Scholar 

  • Duan, C., Nandy, A., Meyer, R., Arunachalam, N. & Kulik, H. J. A transferable recommender approach for selecting the best density functional approximations in chemical discovery. Nat. Comput. Sci. 3, 38–47 (2023).

    Article 

    Google Scholar 

  • Corso, G., Stärk, H., Jing, B., Barzilay, R. & Jaakkola, T. DiffDock: diffusion steps, twists, and turns for molecular docking. Preprint at https://arxiv.org/abs/2210.01776 (2023).

  • Zhao, Q. et al. Comprehensive exploration of graphically defined reaction spaces. Sci. Data 10, 145 (2023).

    Article 

    Google Scholar 

  • Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).

    Article 

    Google Scholar 

  • Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N. & Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning, PMLR 37, 2256–2265 (2015).

  • Song, Y. et al. Score-based generative modeling through stochastic differential equations. In International Conference on Learning Representations. Preprint at https://arxiv.org/abs/2011.13456v2 (2021).

  • Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M. & Le, M. Flow matching for generative modeling. In The Eleventh International Conference on Learning Representations (ICLR, 2023).

  • Liu, G.-H. et al. I2SB: Image-to-image Schrödinger bridge. In International Conference on Machine Learning (ICLR, 2023).

  • Somnath, V. R. et al. Aligned diffusion Schrödinger bridges. In Proc. 39th Conference on Uncertainty in Artificial Intelligence. Vol 216 (PMLR, 2023).

  • Zhao, Q., Hsu, H.-H. & Savoie, B. Conformational sampling for transition state searches on a computational budget. J. Chem. Theory Comput. 18, 3006–3016 (2022).

    Article 

    Google Scholar 

  • Sindhu, A., Pradhan, R., Lourderaj, U. & Paranjothy, M. Theoretical investigation of the isomerization pathways of diazenes: torsion vs. inversion. Phys. Chem. Chem. Phys. 21, 15678–15685 (2019).

    Article 

    Google Scholar 

  • Koda, S.-i & Saito, S. Locating transition states by variational reaction path optimization with an energy-derivative-free objective function. J. Chem. Theory Comput. 20, 2798–2811 (2024).

    Article 

    Google Scholar 

  • Schreiner, M., Bhowmik, A., Vegge, T., Busk, J. & Winther, O. Transition1x—a dataset for building generalizable reactive machine learning potentials. Sci. Data 9, 779 (2022).

    Article 

    Google Scholar 

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Phys. Chem. 113, 9901–9904 (2000).

    Article 

    Google Scholar 

  • Chai, J.-D. & Head-Gordon, M. Systematic optimization of long-range corrected hybrid density functionals. J. Phys. Chem. 128, 084106 (2008).

    Article 

    Google Scholar 

  • Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-orbital methods. IX. an extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Phys. Chem. 54, 724–728 (1971).

    Article 

    Google Scholar 

  • Grambow, C. A., Pattanaik, L. & Green, W. H. Reactants, products, and transition states of elementary chemical reactions based on quantum chemistry. Sci. Data 7, 137 (2020).

    Article 

    Google Scholar 

  • Grambow, C. A., Pattanaik, L. & Green, W. H. Deep learning of activation energies. J. Phys. Chem. Lett. 11, 2992–2997 (2020).

    Article 

    Google Scholar 

  • Ruddigkeit, L., van Deursen, R., Blum, L. C. & Reymond, J.-L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52, 2864–2875 (2012).

    Article 

    Google Scholar 

  • Du, W. et al. A new perspective on building efficient and expressive 3D equivariant graph neural networks. Adv. Neural Inf. Process. Syst. 36, 66647–66674 (2023).

    Google Scholar 

  • Fu, H., Zhou, Y., Jing, X., Shao, X. & Cai, W. Meta-analysis reveals that absolute binding free-energy calculations approach chemical accuracy. J. Med. Chem. 65, 12970–12978 (2022).

    Article 

    Google Scholar 

  • Bremond, E., Li, H., Perez-Jimenez, A. J., Sancho-Garcia, J. C. & Adamo, C. Tackling an accurate description of molecular reactivity with double-hybrid density functionals. J. Chem. Phys. 156, 161101 (2022).

    Article 

    Google Scholar 

  • Zhao, Q. & Savoie, B. M. Algorithmic explorations of unimolecular and bimolecular reaction spaces. Angew. Chem. Int. Ed. 61, e202210693 (2022).

    Article 

    Google Scholar 

  • Grambow, C. A. et al. Unimolecular reaction pathways of a γ-ketohydroperoxide from combined application of automated reaction discovery methods. J. Am. Chem. Soc. 140, 1035–1048 (2018).

    Article 

    Google Scholar 

  • Naz, E. G. & Paranjothy, M. Unimolecular dissociation of γ-ketohydroperoxide via direct chemical dynamics simulations. J Phys. Chem. A 124, 8120–8127 (2020).

    Article 

    Google Scholar 

  • Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).

    Article 

    Google Scholar 

  • Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 

    Google Scholar 

  • Tran, R. et al. The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts. ACS Catal. 13, 3066–3084 (2023).

    Article 

    Google Scholar 

  • Chmiela, S. et al. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017).

    Article 

    Google Scholar 

  • Chmiela, S. et al. Accurate global machine learning force fields for molecules with hundreds of atoms. Sci. Adv. 9, eadf0873 (2023).

    Article 

    Google Scholar 

  • Nandi, S., Vegge, T. & Bhowmik, A. MultiXC-QM9: large dataset of molecular and reaction energies from multi-level quantum chemical methods. Sci. Data 10, 783 (2023).

    Article 

    Google Scholar 

  • Birkholz, A. B. & Schlegel, H. B. Using bonding to guide transition state optimization. J. Comput. Chem. 36, 1157–1166 (2015).

    Article 

    Google Scholar 

  • Kovács, D. P. et al MACE-OFF: Transferable machine learning force fields for organic molecules. Preprint at https://arxiv.org/abs/2312.15211 (2023).

  • Zhang, D., Liu, X. & Zhang, X. DPA-2: a large atomic model as a multi-task learner. NPJ Comput. Mater 10, 293 (2024).

    Article 

    Google Scholar 

  • Du, Y. et al. in Advances in Neural Information Processing Systems, (eds Oh, A. et al.) vol. 36, 77359–77378 (Curran Associates, 2023).

  • Du, Y. et al. Doob’s Lagrangian: a sample-efficient variational approach to transition path sampling. In (Globerson. A. et al. eds) Advances in Neural Information Processing Systems 37, 65791–65822 (2024).

  • Serre, J.-P. et al. Linear Representations of Finite Groups vol. 42 (Springer, 1977).

  • Bronstein, M. M., Bruna, J., Cohen, T. & Veličković, P. Geometric deep learning: grids, groups, graphs, geodesics, and gauges. Preprint at https://arxiv.org/abs/2104.13478 (2021).

  • Köhler, J., Klein, L. & Noé, F. Equivariant flows: exact likelihood generative learning for symmetric densities. In International Conference on Machine Learning 5361–5370 (2020).

  • Villani, C. et al. Optimal Transport: Old and New vol. 338 (Springer, 2009).

  • Villani, C. Topics in Optimal Transportation vol. 58 (American Mathematical Society, 2021).

  • Santambrogio, F. Optimal transport for applied mathematicians. Birkäuser 55, 94 (2015).

    Google Scholar 

  • Zhang, L. & Wang, L. Monge-amp\ere flow for generative modeling. Preprint at https://arxiv.org/abs/1809.10188 (2018).

  • Monge, G. Mémoire sur la théorie des déblais et des remblais. Imprimerie Royale (1781).

  • Kantorovich, L. V. On the translocation of masses. Dokl. Akad. Nauk. 37, 199–201 (1942).

  • Benamou, J.-D. & Brenier, Y. A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Num. Math. 84, 375–393 (2000).

    Article 
    MathSciNet 

    Google Scholar 

  • Peyré, G. & Cuturi, M. Computational Optimal Transport (Center for Research in Economics and Statistics Working Papers, 2017).

  • Liu, X., Gong, C. & Liu, Q. Flow straight and fast: learning to generate and transfer data with rectified flow. In 11th International Conference on Learning Representations (2023).

  • Shen, Z. et al. Accurate point cloud registration with robust optimal transport. Adv. Neural Inf. Process. Syst. 34, 5373–5389 (2021).

    Google Scholar 

  • Titouan, V., Courty, N., Tavenard, R. & Flamary, R. Optimal transport for structured data with application on graphs. In International Conference on Machine Learning 6275–6284 (PMLR, 2019).

  • Lugmayr, A. et al. Repaint: inpainting using denoising diffusion probabilistic models. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022).

  • Schreiner, M. et al. Transition1x. Figshare https://doi.org/10.6084/m9.figshare.19614657.v4 (2022).

  • Zhao, Q. et al. Reaction dataset. Zenodo https://doi.org/10.5281/zenodo.13119868 (2024).

  • Zhao, Q. deepprinciple/react-ot: reactot. Zenodo https://doi.org/10.5281/zenodo.14836384 (2025).

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-04-23 00:00:00

    Related Articles

    Back to top button