AI

Personalized uncertainty quantification in artificial intelligence

  • Allen, B. The promise of explainable AI in digital health for precision medicine: a systematic review. J. Personalized Med. 14, 277 (2024).

    Article 

    Google Scholar 

  • Battaglini, M. & Rasmussen, S. Transparency, automated decision-making processes and personal profiling. J. Data Prot. Priv. 2, 331–349 (2019).

    Google Scholar 

  • Christensen, J. in Demystifying AI for the Enterprise 149–192 (Productivity, 2021).

  • Hüllermeier, E. & Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110, 457–506 (2021).

    Article 
    MathSciNet 

    Google Scholar 

  • Der Kiureghian, A. & Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Saf. 31, 105–112 (2009).

    Article 

    Google Scholar 

  • Volodina, V. & Challenor, P. The importance of uncertainty quantification in model reproducibility. Philos. Trans. R. Soc. A 379 (2021).

  • Walther, B. A. & Moore, J. L. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 815–829 (2005).

    Article 

    Google Scholar 

  • Krishnan, R. & Tickoo, O. Improving model calibration with accuracy versus uncertainty optimization. Adv. Neural Inf. Process. Syst. 33, 18237–18248 (2020).

  • Rogers, W. A. & Walker, M. J. Fragility, uncertainty, and healthcare. Theor. Med. Bioeth. 37, 71–83 (2016).

    Article 

    Google Scholar 

  • Podkopaev, A. & Ramdas, A. Distribution-free uncertainty quantification for classification under label shift. Proc. Mach. Learn. Res. 161, 844–853 (2021).

  • Thuy, A. & Benoit, D. F. Explainability through uncertainty: trustworthy decision-making with neural networks. Eur. J. Oper. Res. 317, 330–340 (2024).

    MathSciNet 

    Google Scholar 

  • Kumar, S. & Srivastava, A. Bootstrap prediction intervals in non-parametric regression with applications to anomaly detection. In Proc. 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2012).

  • Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Proc. Mach. Learn. Res. 48, 1050–1059 (2016).

  • Milanés-Hermosilla, D. et al. Monte Carlo dropout for uncertainty estimation and motor imagery classification. Sensors 21, 7241 (2021).

    Article 

    Google Scholar 

  • Kotelevskii, N., Horváth, S., Nandakumar, K., Takáč, M. & Panov, M. Dirichlet-based uncertainty quantification for personalized federated learning with improved posterior networks. In Proc. Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24) 7127–7135 (2023).

  • Wang, X. & Kadıoğlu, S. Modeling uncertainty to improve personalized recommendations via bayesian deep learning. Int. J. Data Sci. Anal. 16, 191–201 (2023).

    Article 

    Google Scholar 

  • Vovk, V., Gammerman, A. & Shafer, G. Algorithmic Learning in a Random World Vol. 29 (Springer, 2005).

  • Angelopoulos, A. N. & Bates, S. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. Foundations and Trends in Machine Learning 16, 494–591 (2023).

    Article 

    Google Scholar 

  • Papadopoulos, H., Proedrou, K., Vovk, V. & Gammerman, A. Inductive confidence machines for regression. In Machine Learning: ECML 2002 (eds Elomaa, T. et al.) 345–356 (Lecture Notes in Computer Science Vol. 2430, Springer, 2002).

  • Barber, R. F., Candes, E. J., Ramdas, A. & Tibshirani, R. J. Conformal prediction beyond exchangeability. Ann. Stat. 51, 816–845 (2023).

    Article 
    MathSciNet 

    Google Scholar 

  • Gibbs, I. & Candes, E. Adaptive conformal inference under distribution shift. Adv. Neural Inf. Process. Syst. 34, 1660–1672 (2021).

    Google Scholar 

  • Gibbs, I. & Candes, E. Conformal inference for online prediction with arbitrary distribution shifts. J. Mach. Learn. Res. 25.162, 1–36 (2024).

    MathSciNet 

    Google Scholar 

  • Angelopoulos, A. N., Barber, R. F. & Bates, S. Online conformal prediction with decaying step sizes. Proc. Mach. Learn. Res. 235, 1616–1630 (2024).

    Google Scholar 

  • Zaffran, M., Féron, O., Goude, Y., Josse, J. & Dieuleveut, A. Adaptive conformal predictions for time series. Proc. Mach. Learn. Res. 162, 25834–25866 (2022).

  • Lei, J. & Wasserman, L. Distribution-free prediction bands for non-parametric regression. J. R. Stat. Soc. B 76, 71–96 (2014).

    Article 
    MathSciNet 

    Google Scholar 

  • Löfström, T., Boström, H., Linusson, H. & Johansson, U. Bias reduction through conditional conformal prediction. Intell. Data Anal. 19, 1355–1375 (2015).

    Article 

    Google Scholar 

  • Foygel Barber, R., Candes, E. J., Ramdas, A. & Tibshirani, R. J. The limits of distribution-free conditional predictive inference. Inf. Inference 10, 455–482 (2021).

    MathSciNet 

    Google Scholar 

  • Romano, Y., Patterson, E. & Candes, E. Conformalized quantile regression. Adv. Neural Inf. Process. Syst. 32 (2019).

  • Romano, Y., Sesia, M. & Candes, E. Classification with valid and adaptive coverage. Adv. Neural Inf. Process. Syst. 33, 3581–3591 (2020).

    Google Scholar 

  • Guan, L. Localized conformal prediction: a generalized inference framework for conformal prediction. Biometrika 110, 33–50 (2023).

    Article 
    MathSciNet 

    Google Scholar 

  • Ding, T., Angelopoulos, A., Bates, S., Jordan, M. & Tibshirani, R. J. Class-conditional conformal prediction with many classes. Adv. Neural Inf. Process. Syst. 36 (2024).

  • Romano, Y., Barber, R. F., Sabatti, C. & Candès, E. With malice toward none: assessing uncertainty via equalized coverage. Harv. Data Sci. Rev. 2, 4 (2020).

    Google Scholar 

  • Sadinle, M., Lei, J. & Wasserman, L. Least ambiguous set-valued classifiers with bounded error levels. J. Am. Stat. Assoc. 114, 223–234 (2019).

    Article 
    MathSciNet 

    Google Scholar 

  • Gibbs, I., Cherian, J. J. & Candès, E. J. Conformal prediction with conditional guarantees. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2025.

  • Ye, D. et al. Uncertainty quantification patterns for multiscale models. Philos. Trans. R. Soc. A 379, 20200072 (2021).

    Article 

    Google Scholar 

  • Akbari, A. & Jafari, R. Personalizing activity recognition models through quantifying different types of uncertainty using wearable sensors. IEEE Trans. Biomed. Eng. 67, 2530–2541 (2020).

    Article 

    Google Scholar 

  • Fontana, M., Zeni, G. & Vantini, S. Conformal prediction: a unified review of theory and new challenges. Preprint at https://arxiv.org/abs/2005.07972 (2021).

  • Abdar, M. et al. A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021).

    Article 

    Google Scholar 

  • Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    Article 

    Google Scholar 

  • Ji, Q. et al. Multimodal omics approaches to aging and age-related diseases. Phenomics 4, 56–71 (2024).

    Article 

    Google Scholar 

  • Canali, S., Schiaffonati, V. & Aliverti, A. Challenges and recommendations for wearable devices in digital health: data quality, interoperability, health equity, fairness. PLoS Digit. Health 1, e0000104 (2022).

    Article 

    Google Scholar 

  • Futoma, J. et al. As good as it gets? A new approach to estimating possible prediction performance. PLoS ONE 19, e0296904 (2024).

    Article 

    Google Scholar 

  • Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J. & Shah, S. P. Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22, 114–126 (2022).

    Article 

    Google Scholar 

  • Baltrušaitis, T., Ahuja, C. & Morency, L.-P. Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 423–443 (2018).

    Article 

    Google Scholar 

  • Rahate, A., Walambe, R., Ramanna, S. & Kotecha, K. Multimodal co-learning: challenges, applications with datasets, recent advances and future directions. Inf. Fusion 81, 203–239 (2022).

    Article 

    Google Scholar 

  • Longo, L. et al. Explainable Artificial Intelligence (XAI) 2.0: a manifesto of open challenges and interdisciplinary research directions. Inf. Fusion 106, 102301 (2024).

    Article 

    Google Scholar 

  • Ayci, G., Sensoy, M., Özgür, A. & Yolum, P. Uncertainty-aware personal assistant for making personalized privacy decisions. ACM Trans. Internet Technol. 23, 13 (2023).

    Article 

    Google Scholar 

  • Tjoa, E. & Guan, C. A survey on Explainable Artificial Intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32, 4793–4813 (2020).

    Article 

    Google Scholar 

  • Qian, W. et al. Towards modeling uncertainties of self-explaining neural networks via conformal prediction. In Proc. AAAI Conference on Artificial Intelligence Vol. 38 14651–14659 (2024).

  • Almaslukh, B. A reliable breast cancer diagnosis approach using an optimized deep learning and conformal prediction. Biomed. Signal Process. Control 98, 106743 (2024).

    Article 

    Google Scholar 

  • Quinonero-Candela, J. et al. Dataset Shift in Machine Learning (MIT Press, 2009).

  • Mougan, C. & Nielsen, D. Monitoring model deterioration with explainable uncertainty estimation via non-parametric bootstrap. In Proc. AAAI Conference on Artificial Intelligence Vol. 37:12 15037–15045 (2023).

  • Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M. & Bouchachia, A. A survey on concept drift adaptation. ACM Comput. Surv. 46, 44 (2014).

    Article 

    Google Scholar 

  • Sebastiao, R. & Gama, J. On evaluating stream learning algorithms. Mach. Learn. 90, 317–346 (2013).

    Article 
    MathSciNet 

    Google Scholar 

  • Sebastiao, R. & Gama, J. A study on change detection methods. In Progress in Artificial Intelligence, 14th Portuguese Conference on Artificial Intelligence, EPIA 12–15 (2009).

  • Bayram, F., Ahmed, B. & Kassler, A. From concept drift to model degradation: an overview on performance-aware drift detectors. Knowl.-Based Syst. 245, 108632 (2022).

    Article 

    Google Scholar 

  • Garg, S., Balakrishnan, S., Lipton, Z., Neyshabur, B. & Sedghi, H. Leveraging unlabeled data to predict out-of-distribution performance. In NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications (2021).

  • Barber, R., Candes, E., Ramdas, A. & Tibshirani, R. Predictive inference with the jackknife+. Ann. Stat. 49, 486–507 (2021).

    Article 
    MathSciNet 

    Google Scholar 

  • Tibshirani, R. J., Foygel Barber, R., Candes, E. & Ramdas, A. Conformal prediction under covariate shift. Adv. Neural Inf. Process. Syst. 32 (2019).

  • de Barros, R. & de Carvalho Santos, S. An overview and comprehensive comparison of ensembles for concept drift. Inf. Fusion 52, 213–244 (2019).

    Article 

    Google Scholar 

  • Barros, R. & Santos, S. A large-scale comparison of concept drift detectors. Inf. Sci. 451, 348–370 (2018).

    Article 
    MathSciNet 

    Google Scholar 

  • Ovadia, Y. et al. Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. Proceedings of NeurIPS (2019).

  • Lobo, J., Del Ser, J., Bifet, A. & Kasabov, N. Spiking neural networks and online learning: an overview and perspectives. Neural Netw. 121, 88–100 (2020).

    Article 

    Google Scholar 

  • Cao, Y. et al. Knowledge-preserving incremental social event detection via heterogeneous GNNs. In Proc. Web Conference 2021 3383–3395 (2021).

  • Mitra, R. et al. Learning from data with structured missingness. Nat. Mach. Intell. 5, 13–23 (2023).

    Article 

    Google Scholar 

  • Jackson, J., Mitra, R., Hagenbuch, N., McGough, S. & Harbron, C. A complete characterisation of structured missingness. Preprint at https://arxiv.org/abs/2307.02650 (2023).

  • Bianconi, G. Multilayer Networks (Oxford Univ. Press, 2018).

  • Bianconi, G. Higher-Order Networks (Cambridge Univ. Press, 2021).

  • Baptista, A., Sánchez-García, R. J., Baudot, A. & Bianconi, G. Zoo guide to network embedding. Journal of Physics: Complexity. 4 (2023).

  • Gutknecht, A. J., Wibral, M. & Makkeh, A. Bits and pieces: understanding information decomposition from part–whole relationships and formal logic. Proc. R. Soc. A 477, 20210110 (2021).

  • Kiang, M. V. et al. Sociodemographic characteristics of missing data in digital phenotyping. Sci. Rep. 11, 14447 (2021).

    Article 

    Google Scholar 

  • Tsiampalis, T. & Panagiotakos, D. B. Missing-data analysis: socio-demographic, clinical and lifestyle determinants of low response rate on self-reported psychological and nutrition related multi-item instruments in the context of the ATTICA epidemiological study. BMC Med. Res. Methodol. 20, 148 (2020).

    Article 

    Google Scholar 

  • Angwin, J., Larson, J., Mattu, S. & Kirchner, L. Machine bias. ProPublica https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing (2016).

  • Vyas, D. A., Eisenstein, L. G. & Jones, D. S. Hidden in plain sight—reconsidering the use of race correction in clinical algorithms. N. Engl. J. Med. 382, 2465–2474 (2020).

    Google Scholar 

  • Ibrahim, H., Liu, X., Zariffa, N., Morris, A. D. & Denniston, A. K. Health data poverty: an assailable barrier to equitable digital health care. Lancet Digit. Health 2, E666–E676 (2020).

    Google Scholar 

  • Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 27, 24–29 (2021).

    Google Scholar 

  • Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 1565–1576 (2019).

    Article 

    Google Scholar 

  • Buolamwini, J. & Gebru, T. Gender shades: intersectional accuracy disparities in commercial gender classification. In Proc. 1st Conference on Fairness, Accountability and Transparency 77–91 (2018).

  • Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 111–120 (2021).

    Article 

    Google Scholar 

  • Chen, I. Y., Johansson, F. D. & Sontag, D. Why is my classifier discriminatory? In Proc. NIPS 3543–3554 (2018).

  • Matovu, E. et al. Enabling the genomic revolution in Africa. Science 344, 1260792 (2014).

    Google Scholar 

  • Suriyakumar, V. & Narayanan, A. Proc. Mach. Learn. Res. 202, 7395–7405 (2023).

  • Régis, C., Denis, J.-L., Axente, M. L. & Kishimoto, A. Human-Centered AI: a Multidisciplinary Perspective for policy-Makers, Auditors, and Users (Chapman & Hall, 2024).

  • Combs, K., Moyer, A. & Bihl, T. J. Uncertainty in visual generative AI. Algorithms 17, 136 (2024).

    Article 

    Google Scholar 

  • Farquhar, S., Kossen, J., Kuhn, L. & Gal, Y. Detecting hallucinations in large language models using semantic entropy. Nature 630, 625–630 (2024).

    Article 

    Google Scholar 

  • Kanwal, N. et al. Are you sure it’s an artifact? Artifact detection and uncertainty quantification in histological images. Comput. Med. Imaging Graph. 112, 102321 (2024).

    Article 

    Google Scholar 

  • Zhou, E. & Lee, D. Generative artificial intelligence, human creativity, and art. PNAS nexus 3, pgae052 (2024).

    Article 

    Google Scholar 

  • Grant, N. Google chatbot’s A.I. images put people of color in Nazi-era uniforms. New York Times https://www.nytimes.com/2024/02/22/technology/google-gemini-german-uniforms.html (2024).

  • Subramanian, H. V., Canfield, C., Shank, D. B. & Kinnison, M. Combining uncertainty information with AI recommendations supports calibration with domain knowledge. J. Risk Res. 26, 1137–1152 (2023).

    Article 

    Google Scholar 

  • Harish, V., Morgado, F., Stern, A. D. & Das, S. Artificial intelligence and clinical decision making: the new nature of medical uncertainty. Acad. Med. 96, 31–36 (2021).

    Article 

    Google Scholar 

  • DeFrank, J. & Luiz, A. AI-based personalized treatment recommendation for cancer patients. J. Carcinogenesis 21, 57–63 (2022).

    Google Scholar 

  • European Union. Regulation (EU) 2024/1689. Official J. Eur. Union (2024).

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-04-23 00:00:00

    Related Articles

    Back to top button