AI

Harnessing the power of single-cell large language models with parameter-efficient fine-tuning using scPEFT

  • Pike, D. T. et al. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat. Rev. Cardiol. 17457-473 (2020).

    Article Google Scholar

  • Zhang, Y. & Zhang, Z. History and progress in cancer immunotherapy: understanding the properties of tumor-infiltrating immune cells and their therapeutic implications. cell. mall. Immunol. 17807-821 (2020).

    Article Google Scholar

  • Li, X. et al. deep learning enables accurate clustering while removing the batch effect in single-cell RNA-seq analysis. Nat. subscriber. 112338 (2020).

    Article Google Scholar

  • Yang, F. et al. scBERT as a large-scale pre-trained deep language model for cell type annotation of single-cell RNA-seq data. Nat. Mach. Intel. 4852-866 (2022).

    Article Google Scholar

  • Theodoris, CV et al. Transfer learning enables predictions in network biology. nature 618616-624 (2023).

  • Cui, H. et al. scGPT: Towards building a basic multi-cell model using generative artificial intelligence. Nat. Knock 211470-1480 (2024).

  • Howe, M. et al. A large-scale basis model on single-cell transcriptomics. Nat. Knock 211481–1491 (2024).

  • Heimberg, G. et al. A baseline model for a cell atlas for scalable research on similar human cells. nature 6381085-1094 (2025).

  • Yang, X. et al. GeneCompass: Deciphering global gene regulatory mechanisms using a knowledge-based foundational model across species. Cell resolution. 34830-845 (2024).

  • Fisher, F. et al. scTab: scaling single-cell annotation models across tissues. Nat. subscriber. 156611 (2024).

    Article Google Scholar

  • Ma, S. et al. Harnessing the power of deep learning for fundamental models in single-cell omics. Nat. Rev. Mall. Cell Biol. 25593-594 (2024).

    Article Google Scholar

  • Kedzierska, C.Z. et al. Null evaluation reveals the limitations of single-cell basis models. Genome Biol. 26101 (2025).

    Article Google Scholar

  • Boyarsky, R. et al. A deeper evaluation of the single-cell basis model. Nat. Mach. Intel. 61443-1446 (2024).

    Article Google Scholar

  • Chen, H. et al. Multi-task quantitative learning for context-specific representation of gene network dynamics. Preprint in com.bioRxiv https://doi.org/10.1101/2024.08.16.608180 (2024).

  • Bechet, E. et al. Dimensionality reduction for single-cell data visualization using UMAP. Nat. Biotechnology. 3738-44 (2019).

  • Arran, D. et al. Reference analysis of lung single-cell sequences reveals the presence of transitional fibrotic macrophages. Nat. Immunol. 20163-172 (2019).

    Article Google Scholar

  • Hao, Y. et al. Dictionary learning for integrated, multimodal, and scalable single-cell analysis. Nat. Biotechnology. 42293-304 (2024).

    Article Google Scholar

  • Liu, B. et al. Single-cell time tracking reveals clonal revival and expansion of exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. cancer 3108-112 (2022).

    Article Google Scholar

  • Zhang, H. et al. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. eLife 7e32532 (2018).

    Article Google Scholar

  • Park, D. et al. Differences in molecular signatures of mucosa-associated invariant T cells and conventional T cells. Science fiction. representative. 97094 (2019).

    Article Google Scholar

  • Teng, X. et al. SIGIRR deficiency contributes to CD4 T cell abnormalities by facilitating the IL1/C/EBPβ/TNF-α signaling axis in rheumatoid arthritis. mall. Med. 28135 (2022).

    Article Google Scholar

  • Yang, R. et al. Distinctive epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer patients detected by genome-wide DNA methylation analysis. Genome Biol. 212 (2020).

    Article Google Scholar

  • Hodge, R.D. et al. Conserved cell types with divergent features in human versus mouse cortex. nature 57361-68 (2019).

    Article Google Scholar

  • Yao, Z. et al. Classification of transcriptional cell types across the isocortical and hippocampal formation. cell 1843222-3241 (2021).

    Article Google Scholar

  • Traag, VA, Waltman, L. & Van Eck, NJ From Louvain to Leiden: ensuring well-connected communities. Science fiction. representative. 95233 (2019).

    Article Google Scholar

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach to interpreting genome-wide expression profiles. Brooke. Natl Acad. Science fiction. USA 10215545-15550 (2005).

    Article Google Scholar

  • Lopez, R. et al. Deep generative modeling of single-cell transcriptomes. Nat. Knock 151053-1058 (2018).

    Article Google Scholar

  • Hi, PL et al. Scanorama: Integrating large and diverse single-cell transcriptome datasets. Nat. Protoc. 192283-2297 (2024).

  • Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional consequences of novel polygenic disorders using GEARS. Nat. Biotechnology. 42927-935 (2024).

    Article Google Scholar

  • Ahlmann-Eltze, C., Huber, W. & Anders, S. Deep learning-based gene perturbation effect prediction is not yet superior to simple linear baselines. Nat. Knock 221657-1661 (2025).

    Article Google Scholar

  • Hong, L. et al. Rapid and sensitive detection of protein homologs using deep dense retrieval. Nat. Biotechnology. 43983-995 (2025).

    Article Google Scholar

  • Adori, AK et al. Predicting cellular responses to perturbation across diverse contexts with state. Preprint in com.bioRxiv https://doi.org/10.1101/2025.06.26.661135 (2025).

  • Lin, Z. et al. Evolutionary prediction of protein structure at the atomic level using a linguistic model. sciences 3791123-1130 (2023).

    Article MathSciNet Google Scholar

  • Kirillov, A. et al. Section anything. in Brooke. IEEE/CVF International Conference on Computer Vision 4015-4026 (IEEE, 2023).

  • Vaswani, A. et al. Attention is all you need. in Brooke. Advances in neural information processing systemsvol. 30 (eds Guyon, I. et al.) (Curran Associates, 2017).

  • Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2017).

  • CZI Cell Sciences Program et al. CZ CELLxGENE Discover: A single-cell data platform for scalable exploration, analysis and modeling of aggregated data. Res nucleic acids. 53D886 – D900 (2024).

  • Franzen, O., Gunn, L.-M. & Björkegren, J. L. M. PanglaoDB: a web server for exploring human and mouse single-cell RNA sequencing data. Database 2019Baz046 (2019).

  • Li, XL & Liang, P. Prefix tuning: improving continuous generation claims. Preprint at https://doi.org/10.48550/arXiv.2101.00190 (2021).

  • Hu, EJ et al. LoRA: Low-level adaptation of large language models. in 10th International Conference on Learning Representations (International Lake Conference, 2022).

  • O’Leary, N.A. et al. Exploring and retrieving sequences and metadata for species across the tree of life using NCBI datasets. Science fiction. Data 11732 (2024).

    Article Google Scholar

  • Lee, W. COVID-19 dataset. Share fig (2020).

  • He, F. Processed datasets used in the scPEFT study. Share fig https://doi.org/10.6084/M9.FIGSHARE.30763886 (2025).

  • He, F. Codebase for scPEFT: Harnessing the power of large single-cell language models with efficient fine-tuning of parameters (version 1.0.0). Zenodu https://doi.org/10.5281/zenodo.17781912 (2025).

  • Don’t miss more hot News like this! AI/" target="_blank" rel="noopener">Click here to discover the latest in AI news!

    2025-12-31 00:00:00

    Related Articles

    Back to top button