Target-specific de novo design of drug candidate molecules with graph-transformer-based generative adversarial networks
Rifaioglu, A. S. et al. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief. Bioinform. 20, 1878–1912 (2019).
Google Scholar
Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).
Google Scholar
Bhisetti, G. & Fang, C. Artificial intelligence–enabled de novo design of novel compounds that are synthesizable. Methods Mol. Biol. 2390, 409–419 (2022).
Google Scholar
Elton, D. C., Boukouvalas, Z., Fuge, M. D. & Chung, P. W. Deep learning for molecular design—a review of the state of the art. Mol. Syst. Des. Eng. 4, 828–849 (2019).
Google Scholar
Walters, W. P. Virtual chemical libraries: miniperspective. J. Med. Chem. 62, 1116–1124 (2018).
Google Scholar
Mouchlis, V. D. et al. Advances in de novo drug design: from conventional to machine learning methods. Int. J. Mol. Sci. 22, 1676 (2021).
Google Scholar
Kingma, D. P. & Welling, M. An introduction to variational autoencoders. Found. trends Mach. Learn. 12, 307–392 (2019).
Google Scholar
Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).
Google Scholar
Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).
Google Scholar
De Cao, N. & Kipf, T. MolGAN: an implicit generative model for small molecular graphs. In ICML 2018 Workshop onTheoretical Foundations and Applications of Deep Generative Models (2018).
Zou, J., Yu, J., Hu, P., Zhao, L. & Shi, S. STAGAN: an approach for improve the stability of molecular graph generation based on generative adversarial networks. Comput. Biol. Med. 167, 107691 (2023).
Google Scholar
Mahmood, O., Mansimov, E., Bonneau, R. & Cho, K. Masked graph modeling for molecule generation. Nat. Commun. 12, 3156 (2021).
Google Scholar
Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N. & Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In Proc. 32nd International Conference on Machine Learning (eds Bach, F. & Blei, D.) 2256–2265 (PMLR, 2015).
Peng, X. et al. Pocket2Mol: efficient molecular sampling based on 3D protein pockets. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 17644–17655 (PMLR, 2022).
Schneuing, A. et al. Structure‑based drug design with equivariant diffusion models. Nat. Comput. Sci. 4, 899–909 (2024).
Google Scholar
Hoogeboom, E., Satorras, V. G., Vignac, C. & Welling, M. Equivariant diffusion for molecule generation in 3D. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 8867–8887 (PMLR, 2022).
Mitton, J., Senn, H. M., Wynne, K. & Murray‑Smith, R. A graph VAE and graph transformer approach to generating molecular graphs. In ICML 2020 Workshop on Graph Representation Learning and Beyond (2020).
Richards, R. J. & Groener, A. M. Conditional β-VAE for de novo molecular generation. Preprint at https://arxiv.org/abs/2205.01592 (2022).
Nemoto, K. & Kaneko, H. De novo direct inverse QSPR/QSAR: chemical variational autoencoder and Gaussian mixture regression models. J. Chem. Inf. Model. 63, 794–805 (2023).
Google Scholar
Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A. & Zhavoronkov, A. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharm. 14, 3098–3104 (2017).
Google Scholar
Xie, X., Valiente, P. A. & Kim, P. M. HelixGAN a deep-learning methodology for conditional de novo design of α-helix structures. Bioinformatics 39, btad036 (2023).
Google Scholar
Arús-Pous, J. et al. Randomized SMILES strings improve the quality of molecular generative models. J. Cheminform. 11, 71 (2019).
Google Scholar
Blaschke, T. et al. REINVENT 2.0: an AI tool for de novo drug design. J. Chem. Inf. Model. 60, 5918–5922 (2020).
Google Scholar
Wang, X. et al. PETrans: de novo drug design with protein-specific encoding based on transfer learning. Int. J. Mol. Sci. 24, 1146 (2023).
Google Scholar
Bagal, V., Aggarwal, R., Vinod, P. K. & Priyakumar, U. D. MolGPT: molecular generation using a transformer-decoder model. J. Chem. Inf. Model. 62, 2064–2076 (2022).
Google Scholar
Yang, M. et al. CMGN: a conditional molecular generation net to design target-specific molecules with desired properties. Brief. Bioinform. 24, bbad185 (2023).
Google Scholar
Zhang, O. et al. ResGen is a pocket-aware 3D molecular generation model based on parallel multiscale modelling. Nat. Mach. Intell. 5, 1020–1030 (2023).
Google Scholar
Guan, J. et al. 3D equivariant diffusion for target-aware molecule generation and affinity prediction. In Eleventh International Conference on Learning Representations (OpenReview.net, 2023); https://openreview.net/forum?id=kJqXEPXMsE0
Perron, Q. et al. Deep generative models for ligand‐based de novo design applied to multi‐parametric optimization. J. Comput. Chem. 43, 692–703 (2022).
Google Scholar
Fang, Y., Pan, X. & Shen, H.-B. De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment. Bioinformatics 39, btad157 (2023).
Google Scholar
Zhou, Z., Kearnes, S., Li, L., Zare, R. N. & Riley, P. Optimization of molecules via deep reinforcement learning. Sci. Rep. 9, 10752 (2019).
Google Scholar
Liu, M., Luo, Y., Uchino, K., Maruhashi, K. & Ji, S. Generating 3D molecules for target protein binding. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 13912–13924 (PMLR, 2022).
Wang, M. et al. RELATION: a deep generative model for structure-based de novo drug design. J. Med. Chem. 65, 9478–9492 (2022).
Google Scholar
Gebauer, N. W. A., Gastegger, M., Hessmann, S. S. P., Müller, K.-R. & Schütt, K. T. Inverse design of 3D molecular structures with conditional generative neural networks. Nat. Commun. 13, 973 (2022).
Google Scholar
Shi, W. et al. Pocket2Drug: an encoder-decoder deep neural network for the target-based drug design. Front. Pharmacol. 13, 837715 (2022).
Google Scholar
Uludoğan, G., Ozkirimli, E., Ulgen, K. O., Karalı, N. & Özgür, A. Exploiting pretrained biochemical language models for targeted drug design. Bioinformatics 38, ii155–ii161 (2022).
Google Scholar
Rozenberg, E. & Freedman, D. Semi-equivariant conditional normalizing flows, with applications to target-aware molecule generation. Mach. Learn. Sci. Technol. 4, 035037 (2023).
Google Scholar
Li, Y. et al. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nat. Commun. 13, 6891 (2022).
Google Scholar
Zhang, Y. et al. Universal approach to de novo drug design for target proteins using deep reinforcement learning. ACS Omega 8, 5464–5474 (2023).
Google Scholar
Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 6000–6010 (2017).
Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In Proc. 5th International Conference on Learning Representations (OpenReview.net, 2017).
Li, P. et al. An effective self-supervised framework for learning expressive molecular global representations to drug discovery. Brief. Bioinform. 22, bbab109 (2021).
Google Scholar
Rong, Y. et al. Self-supervised graph transformer on large-scale molecular data. Adv. Neural Inf. Process. Syst. 33, 12559–12571 (2020).
Li, H. et al. A knowledge-guided pre-training framework for improving molecular representation learning. Nat. Commun. 14, 7568 (2023).
Google Scholar
Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proc. IEEE International Conference on Computer Vision 2223–2232 (IEEE, 2017).
Kim, T., Cha, M., Kim, H., Lee, J. K. & Kim, J. Learning to discover cross-domain relations with generative adversarial networks. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 1857–1865 (PMLR, 2017).
Addie, M. et al. Discovery of 4-amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases. J. Med. Chem. 56 2059–2073 (2013).
Google Scholar
Polykovskiy, D. et al. Molecular Sets (MOSES): a benchmarking platform for molecular generation models. Front. Pharmacol. 11, 565644 (2020).
Google Scholar
Tadesse, S. et al. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov. Today 25, 406–413 (2020).
Google Scholar
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).
Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Google Scholar
Rifaioglu, A. S. et al. DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem. Sci. 11, 2531–2557 (2020).
Google Scholar
Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 1, 8 (2009).
Google Scholar
Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying the chemical beauty of drugs. Nat. Chem. 4, 90–98 (2012).
Google Scholar
Abeer, A. N. M. N., Urban, N. M., Weil, M. R., Alexander, F. J. & Yoon, B.-J. Multi-objective latent space optimization of generative molecular design models. Patterns 5, 101042 (2024).
Google Scholar
Jain, M. et al. Multi‑objective GFlowNets. In Proc. 40th International Conference on Machine Learning (eds Krause, A. et al.) 14631–14653 (PMLR, 2023).
Monteiro, N. R. C. et al. FSM-DDTR: end-to-end feedback strategy for multi-objective de novo drug design using transformers. Comput. Biol. Med. 164, 107285 (2023).
Google Scholar
Suzuki, T., Ma, D., Yasuo, N. & Sekijima, M. Mothra: multiobjective de novo molecular generation using Monte Carlo tree search. J. Chem. Inf. Model. 64, 7291–7302 (2024).
Google Scholar
Ghosh, B., Dutta, I. K., Totaro, M. & Bayoumi, M. A survey on the progression and performance of generative adversarial networks. In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) 1–8 (IEEE, 2020).
Gui, J., Sun, Z., Wen, Y., Tao, D. & Ye, J. A review on generative adversarial networks: algorithms, theory, and applications. IEEE Trans. Knowl. Data Eng. 35, 3313–3332 (2023).
Google Scholar
Janson, G., Valdes-Garcia, G., Heo, L. & Feig, M. Direct generation of protein conformational ensembles via machine learning. Nat. Commun. 14, 774 (2023).
Google Scholar
Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein generative adversarial networks. In Proc. 34th International Conference on Machine Learning (Precup, D. & Teh, Y. W.) 214–223 (PMLR, 2017).
Krenn, M., Häse, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach. Learn. Sci. Technol. 1, 045024 (2020).
Google Scholar
Yüksel, A., Ulusoy, E., Ünlü, A. & Doğan, T. Selformer: molecular representation learning via SELFIES language models. Mach. Learn. Sci. Technol. 4, 035014 (2023).
Google Scholar
Doğan, T. et al. CROssBAR: comprehensive resource of biomedical relations with knowledge graph representations. Nucleic Acids Res. 49, e96 (2021).
Google Scholar
Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930–D940 (2019).
Google Scholar
Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).
Google Scholar
Landrum, G. et al. rdkit/rdkit: 2024_09_6 (Q3 2024) Release (Release_2024_09_6). Zenodo https://doi.org/10.5281/zenodo.14943932 (2025).
Dwivedi, V. P. & Bresson, X. A generalization of transformer networks to graphs. In AAAI Workshop on Deep Learning on Graphs: Methods and Applications (2021).
Vignac, C. et al. DiGress: discrete denoising diffusion for graph generation. In Eleventh International Conference on Learning Representations (OpenReview.net, 2023); https://openreview.net/forum?id=UaAD-Nu86WX
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. C. Improved training of Wasserstein GANs. Adv. Neural Inf. Process. Syst. 30, 5769–5779 (2017).
Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In International Conference on Learning Representations (OpenReview.net, 2019); https://openreview.net/forum?id=Bkg6RiCqY7
Schoenmaker, L., Béquignon, O. J. M., Jespers, W. & Van Westen, G. J. P. UnCorrupt SMILES: a novel approach to de novo design. J. Cheminform. 15, 22 (2023).
Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).
Google Scholar
Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).
Google Scholar
Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).
Google Scholar
Baell, J. B. & Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740 (2010).
Google Scholar
Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013).
Google Scholar
Schrödinger Release 2022-1: Maestro (Schrödinger, 2022).
Friesner, R. A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).
Google Scholar
Martin, M. P., Olesen, S. H., Georg, G. I. & Schönbrunn, E. Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem. Biol. 8, 2360–2365 (2013).
Google Scholar
The PyMOL molecular graphics system (version 1.8) (Schrödinger, 2015).
Durant, J. L., Leland, B. A., Henry, D. R. & Nourse, J. G. Reoptimization of MDL keys for use in drug discovery. J. Chem. Inf. Comput. Sci. 42, 1273–1280 (2002).
Google Scholar
Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).
Google Scholar
Ünlü, A., Çevrim, E., Yiğit, M. G., Olğaç, A., & Doğan, T. DrugGEN resource collection: training data, model weights, generated molecules, docking and MD analyses (version 3). figshare https://doi.org/10.6084/m9.figshare.29119205.v3 (2025).
Ünlü, A., Çevrim, E., Yigit, M. G., Sarigun, A., & Dogan, T. HUBioDataLab/DrugGEN: DrugGEN v2.0 release (v2.0). Zenodo https://doi.org/10.5281/zenodo.15014579 (2025).
Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C., Farias, P. L. C. & Aspuru-Guzik, A. Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. Preprint at https://arxiv.org/abs/1705.10843 (2018).
Grisoni, F., Moret, M., Lingwood, R. & Schneider, G. Bidirectional molecule generation with recurrent neural networks. J. Chem. Inf. Model. 60, 1175–1183 (2020).
Google Scholar
Xie, Y. et al. MARS: Markov molecular sampling for multi-objective drug discovery. In International Conference on Learning Representations 1–19 (ICLR, 2021).
Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform. 9, 48 (2017).
Matsukiyo, Y., Yamanaka, C. & Yamanishi, Y. De novo generation of chemical structures of inhibitor and activator candidates for therapeutic target proteins by a transformer-based variational autoencoder and Bayesian optimization. J. Chem. Inf. Model. 64, 2345–2355 (2024).
Google Scholar
Don’t miss more hot News like this! Click here to discover the latest in AI news!
2025-09-15 00:00:00



