AI

Target-specific de novo design of drug candidate molecules with graph-transformer-based generative adversarial networks

  • Rifaioglu, A. S. et al. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief. Bioinform. 20, 1878–1912 (2019).

    Article 

    Google Scholar 

  • Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 9, 203–214 (2010).

    Article 

    Google Scholar 

  • Bhisetti, G. & Fang, C. Artificial intelligence–enabled de novo design of novel compounds that are synthesizable. Methods Mol. Biol. 2390, 409–419 (2022).

    Article 

    Google Scholar 

  • Elton, D. C., Boukouvalas, Z., Fuge, M. D. & Chung, P. W. Deep learning for molecular design—a review of the state of the art. Mol. Syst. Des. Eng. 4, 828–849 (2019).

    Article 

    Google Scholar 

  • Walters, W. P. Virtual chemical libraries: miniperspective. J. Med. Chem. 62, 1116–1124 (2018).

    Article 

    Google Scholar 

  • Mouchlis, V. D. et al. Advances in de novo drug design: from conventional to machine learning methods. Int. J. Mol. Sci. 22, 1676 (2021).

    Article 

    Google Scholar 

  • Kingma, D. P. & Welling, M. An introduction to variational autoencoders. Found. trends Mach. Learn. 12, 307–392 (2019).

    Article 

    Google Scholar 

  • Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

    Article 

    Google Scholar 

  • Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).

    Article 

    Google Scholar 

  • De Cao, N. & Kipf, T. MolGAN: an implicit generative model for small molecular graphs. In ICML 2018 Workshop onTheoretical Foundations and Applications of Deep Generative Models (2018).

  • Zou, J., Yu, J., Hu, P., Zhao, L. & Shi, S. STAGAN: an approach for improve the stability of molecular graph generation based on generative adversarial networks. Comput. Biol. Med. 167, 107691 (2023).

    Article 

    Google Scholar 

  • Mahmood, O., Mansimov, E., Bonneau, R. & Cho, K. Masked graph modeling for molecule generation. Nat. Commun. 12, 3156 (2021).

    Article 

    Google Scholar 

  • Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).

    Google Scholar 

  • Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N. & Ganguli, S. Deep unsupervised learning using nonequilibrium thermodynamics. In Proc. 32nd International Conference on Machine Learning (eds Bach, F. & Blei, D.) 2256–2265 (PMLR, 2015).

  • Peng, X. et al. Pocket2Mol: efficient molecular sampling based on 3D protein pockets. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 17644–17655 (PMLR, 2022).

  • Schneuing, A. et al. Structure‑based drug design with equivariant diffusion models. Nat. Comput. Sci. 4, 899–909 (2024).

    Article 

    Google Scholar 

  • Hoogeboom, E., Satorras, V. G., Vignac, C. & Welling, M. Equivariant diffusion for molecule generation in 3D. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 8867–8887 (PMLR, 2022).

  • Mitton, J., Senn, H. M., Wynne, K. & Murray‑Smith, R. A graph VAE and graph transformer approach to generating molecular graphs. In ICML 2020 Workshop on Graph Representation Learning and Beyond (2020).

  • Richards, R. J. & Groener, A. M. Conditional β-VAE for de novo molecular generation. Preprint at https://arxiv.org/abs/2205.01592 (2022).

  • Nemoto, K. & Kaneko, H. De novo direct inverse QSPR/QSAR: chemical variational autoencoder and Gaussian mixture regression models. J. Chem. Inf. Model. 63, 794–805 (2023).

    Article 

    Google Scholar 

  • Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A. & Zhavoronkov, A. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol. Pharm. 14, 3098–3104 (2017).

    Article 

    Google Scholar 

  • Xie, X., Valiente, P. A. & Kim, P. M. HelixGAN a deep-learning methodology for conditional de novo design of α-helix structures. Bioinformatics 39, btad036 (2023).

    Article 

    Google Scholar 

  • Arús-Pous, J. et al. Randomized SMILES strings improve the quality of molecular generative models. J. Cheminform. 11, 71 (2019).

    Article 

    Google Scholar 

  • Blaschke, T. et al. REINVENT 2.0: an AI tool for de novo drug design. J. Chem. Inf. Model. 60, 5918–5922 (2020).

    Article 

    Google Scholar 

  • Wang, X. et al. PETrans: de novo drug design with protein-specific encoding based on transfer learning. Int. J. Mol. Sci. 24, 1146 (2023).

    Article 

    Google Scholar 

  • Bagal, V., Aggarwal, R., Vinod, P. K. & Priyakumar, U. D. MolGPT: molecular generation using a transformer-decoder model. J. Chem. Inf. Model. 62, 2064–2076 (2022).

    Article 

    Google Scholar 

  • Yang, M. et al. CMGN: a conditional molecular generation net to design target-specific molecules with desired properties. Brief. Bioinform. 24, bbad185 (2023).

    Article 

    Google Scholar 

  • Zhang, O. et al. ResGen is a pocket-aware 3D molecular generation model based on parallel multiscale modelling. Nat. Mach. Intell. 5, 1020–1030 (2023).

    Article 

    Google Scholar 

  • Guan, J. et al. 3D equivariant diffusion for target-aware molecule generation and affinity prediction. In Eleventh International Conference on Learning Representations (OpenReview.net, 2023); https://openreview.net/forum?id=kJqXEPXMsE0

  • Perron, Q. et al. Deep generative models for ligand‐based de novo design applied to multi‐parametric optimization. J. Comput. Chem. 43, 692–703 (2022).

    Article 

    Google Scholar 

  • Fang, Y., Pan, X. & Shen, H.-B. De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment. Bioinformatics 39, btad157 (2023).

    Article 

    Google Scholar 

  • Zhou, Z., Kearnes, S., Li, L., Zare, R. N. & Riley, P. Optimization of molecules via deep reinforcement learning. Sci. Rep. 9, 10752 (2019).

    Article 

    Google Scholar 

  • Liu, M., Luo, Y., Uchino, K., Maruhashi, K. & Ji, S. Generating 3D molecules for target protein binding. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 13912–13924 (PMLR, 2022).

  • Wang, M. et al. RELATION: a deep generative model for structure-based de novo drug design. J. Med. Chem. 65, 9478–9492 (2022).

    Article 

    Google Scholar 

  • Gebauer, N. W. A., Gastegger, M., Hessmann, S. S. P., Müller, K.-R. & Schütt, K. T. Inverse design of 3D molecular structures with conditional generative neural networks. Nat. Commun. 13, 973 (2022).

    Article 

    Google Scholar 

  • Shi, W. et al. Pocket2Drug: an encoder-decoder deep neural network for the target-based drug design. Front. Pharmacol. 13, 837715 (2022).

    Article 

    Google Scholar 

  • Uludoğan, G., Ozkirimli, E., Ulgen, K. O., Karalı, N. & Özgür, A. Exploiting pretrained biochemical language models for targeted drug design. Bioinformatics 38, ii155–ii161 (2022).

    Article 

    Google Scholar 

  • Rozenberg, E. & Freedman, D. Semi-equivariant conditional normalizing flows, with applications to target-aware molecule generation. Mach. Learn. Sci. Technol. 4, 035037 (2023).

    Article 

    Google Scholar 

  • Li, Y. et al. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nat. Commun. 13, 6891 (2022).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Universal approach to de novo drug design for target proteins using deep reinforcement learning. ACS Omega 8, 5464–5474 (2023).

    Article 

    Google Scholar 

  • Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 6000–6010 (2017).

    Google Scholar 

  • Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In Proc. 5th International Conference on Learning Representations (OpenReview.net, 2017).

  • Li, P. et al. An effective self-supervised framework for learning expressive molecular global representations to drug discovery. Brief. Bioinform. 22, bbab109 (2021).

    Article 

    Google Scholar 

  • Rong, Y. et al. Self-supervised graph transformer on large-scale molecular data. Adv. Neural Inf. Process. Syst. 33, 12559–12571 (2020).

    Google Scholar 

  • Li, H. et al. A knowledge-guided pre-training framework for improving molecular representation learning. Nat. Commun. 14, 7568 (2023).

    Article 

    Google Scholar 

  • Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proc. IEEE International Conference on Computer Vision 2223–2232 (IEEE, 2017).

  • Kim, T., Cha, M., Kim, H., Lee, J. K. & Kim, J. Learning to discover cross-domain relations with generative adversarial networks. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 1857–1865 (PMLR, 2017).

  • Addie, M. et al. Discovery of 4-amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an orally bioavailable, potent inhibitor of Akt kinases. J. Med. Chem. 56 2059–2073 (2013).

    Article 

    Google Scholar 

  • Polykovskiy, D. et al. Molecular Sets (MOSES): a benchmarking platform for molecular generation models. Front. Pharmacol. 11, 565644 (2020).

    Article 

    Google Scholar 

  • Tadesse, S. et al. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov. Today 25, 406–413 (2020).

    Article 

    Google Scholar 

  • McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  • Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    MATH 

    Google Scholar 

  • Rifaioglu, A. S. et al. DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem. Sci. 11, 2531–2557 (2020).

    Article 

    Google Scholar 

  • Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 1, 8 (2009).

    Article 

    Google Scholar 

  • Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. & Hopkins, A. L. Quantifying the chemical beauty of drugs. Nat. Chem. 4, 90–98 (2012).

    Article 

    Google Scholar 

  • Abeer, A. N. M. N., Urban, N. M., Weil, M. R., Alexander, F. J. & Yoon, B.-J. Multi-objective latent space optimization of generative molecular design models. Patterns 5, 101042 (2024).

    Article 

    Google Scholar 

  • Jain, M. et al. Multi‑objective GFlowNets. In Proc. 40th International Conference on Machine Learning (eds Krause, A. et al.) 14631–14653 (PMLR, 2023).

  • Monteiro, N. R. C. et al. FSM-DDTR: end-to-end feedback strategy for multi-objective de novo drug design using transformers. Comput. Biol. Med. 164, 107285 (2023).

    Article 

    Google Scholar 

  • Suzuki, T., Ma, D., Yasuo, N. & Sekijima, M. Mothra: multiobjective de novo molecular generation using Monte Carlo tree search. J. Chem. Inf. Model. 64, 7291–7302 (2024).

    Article 

    Google Scholar 

  • Ghosh, B., Dutta, I. K., Totaro, M. & Bayoumi, M. A survey on the progression and performance of generative adversarial networks. In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) 1–8 (IEEE, 2020).

  • Gui, J., Sun, Z., Wen, Y., Tao, D. & Ye, J. A review on generative adversarial networks: algorithms, theory, and applications. IEEE Trans. Knowl. Data Eng. 35, 3313–3332 (2023).

    Article 

    Google Scholar 

  • Janson, G., Valdes-Garcia, G., Heo, L. & Feig, M. Direct generation of protein conformational ensembles via machine learning. Nat. Commun. 14, 774 (2023).

    Article 

    Google Scholar 

  • Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein generative adversarial networks. In Proc. 34th International Conference on Machine Learning (Precup, D. & Teh, Y. W.) 214–223 (PMLR, 2017).

  • Krenn, M., Häse, F., Nigam, A., Friederich, P. & Aspuru-Guzik, A. Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach. Learn. Sci. Technol. 1, 045024 (2020).

    Article 

    Google Scholar 

  • Yüksel, A., Ulusoy, E., Ünlü, A. & Doğan, T. Selformer: molecular representation learning via SELFIES language models. Mach. Learn. Sci. Technol. 4, 035014 (2023).

    Article 

    Google Scholar 

  • Doğan, T. et al. CROssBAR: comprehensive resource of biomedical relations with knowledge graph representations. Nucleic Acids Res. 49, e96 (2021).

    Article 

    Google Scholar 

  • Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930–D940 (2019).

    Article 

    Google Scholar 

  • Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

    Article 

    Google Scholar 

  • Landrum, G. et al. rdkit/rdkit: 2024_09_6 (Q3 2024) Release (Release_2024_09_6). Zenodo https://doi.org/10.5281/zenodo.14943932 (2025).

  • Dwivedi, V. P. & Bresson, X. A generalization of transformer networks to graphs. In AAAI Workshop on Deep Learning on Graphs: Methods and Applications (2021).

  • Vignac, C. et al. DiGress: discrete denoising diffusion for graph generation. In Eleventh International Conference on Learning Representations (OpenReview.net, 2023); https://openreview.net/forum?id=UaAD-Nu86WX

  • Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. C. Improved training of Wasserstein GANs. Adv. Neural Inf. Process. Syst. 30, 5769–5779 (2017).

    Google Scholar 

  • Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In International Conference on Learning Representations (OpenReview.net, 2019); https://openreview.net/forum?id=Bkg6RiCqY7

  • Schoenmaker, L., Béquignon, O. J. M., Jespers, W. & Van Westen, G. J. P. UnCorrupt SMILES: a novel approach to de novo design. J. Cheminform. 15, 22 (2023).

    Google Scholar 

  • Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    Article 

    Google Scholar 

  • Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article 

    Google Scholar 

  • Veber, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article 

    Google Scholar 

  • Baell, J. B. & Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740 (2010).

    Article 

    Google Scholar 

  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R. & Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 27, 221–234 (2013).

    Article 

    Google Scholar 

  • Schrödinger Release 2022-1: Maestro (Schrödinger, 2022).

  • Friesner, R. A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J. Med. Chem. 49, 6177–6196 (2006).

    Article 

    Google Scholar 

  • Martin, M. P., Olesen, S. H., Georg, G. I. & Schönbrunn, E. Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem. Biol. 8, 2360–2365 (2013).

    Article 

    Google Scholar 

  • The PyMOL molecular graphics system (version 1.8) (Schrödinger, 2015).

  • Durant, J. L., Leland, B. A., Henry, D. R. & Nourse, J. G. Reoptimization of MDL keys for use in drug discovery. J. Chem. Inf. Comput. Sci. 42, 1273–1280 (2002).

    Article 

    Google Scholar 

  • Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).

    Article 

    Google Scholar 

  • Ünlü, A., Çevrim, E., Yiğit, M. G., Olğaç, A., & Doğan, T. DrugGEN resource collection: training data, model weights, generated molecules, docking and MD analyses (version 3). figshare https://doi.org/10.6084/m9.figshare.29119205.v3 (2025).

  • Ünlü, A., Çevrim, E., Yigit, M. G., Sarigun, A., & Dogan, T. HUBioDataLab/DrugGEN: DrugGEN v2.0 release (v2.0). Zenodo https://doi.org/10.5281/zenodo.15014579 (2025).

  • Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C., Farias, P. L. C. & Aspuru-Guzik, A. Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. Preprint at https://arxiv.org/abs/1705.10843 (2018).

  • Grisoni, F., Moret, M., Lingwood, R. & Schneider, G. Bidirectional molecule generation with recurrent neural networks. J. Chem. Inf. Model. 60, 1175–1183 (2020).

    Article 

    Google Scholar 

  • Xie, Y. et al. MARS: Markov molecular sampling for multi-objective drug discovery. In International Conference on Learning Representations 1–19 (ICLR, 2021).

  • Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. Molecular de-novo design through deep reinforcement learning. J. Cheminform. 9, 48 (2017).

    Google Scholar 

  • Matsukiyo, Y., Yamanaka, C. & Yamanishi, Y. De novo generation of chemical structures of inhibitor and activator candidates for therapeutic target proteins by a transformer-based variational autoencoder and Bayesian optimization. J. Chem. Inf. Model. 64, 2345–2355 (2024).

    Article 

    Google Scholar 

  • Don’t miss more hot News like this! Click here to discover the latest in AI news!

    2025-09-15 00:00:00

    Related Articles

    Back to top button